1,640 research outputs found

    Directional solidification studies in Ni-Al alloys

    Get PDF
    Three solid phases are involved in the phase equilibria of the important intermetallic compound Ni[subscript]3Al near its melting point, [beta], [gamma][superscript]\u27 (Ni[subscript]3Al), and [gamma]. The generally-accepted phase diagram involves a eutectic reaction between [gamma][superscript]\u27 and [gamma], but some recent studies agree with an older diagram due to Schramm, which has a eutectic reaction between the [beta] and [gamma][superscript]\u27 phases. The phase equilibria near Ni[subscript]3Al compositions was evaluated using quenched directional solidification experiments, that preserve the microstructures formed at the solidification front, and using diffusion couple experiments. These experiments show that the eutectic forms between the [beta] and [gamma][superscript]\u27 phases, as in the Schramm diagram. The growth and phase transformations of these three phases are also studied in the directional solidification experiments. The microstructure analysis shows that the etching characteristics of Ni[subscript]3Al ([gamma][superscript]\u27) is very sensitive to small composition variations and crystallographic orientation changes. The eutectic solidification study confirms that the equilibrium eutectic is [gamma][superscript]\u27 + [beta], and that the meta-stable [gamma] + [beta] eutectic might be also produced in this system according to the impurities, solidification rates, and composition variations

    Development of A New Coating System for The High Functional Mold in Thin-wall Casting

    Get PDF
    A new inorganic binder system has been developed to prepare the mold having a high strength for the thin-walled casting. To increase the fracture strength at high temperature, a large amount of inorganic binder should be converted into glass phase and the generated glass phase has to be homogeneously coated on the surface of starting particles. In this work, two types of process were employed to investigate the coating and glassification efficiencies of inorganic precursor. In the first process (process I), the green body consisting of starting powder and organic binder was dipped in the inorganic precursor solution. In the second process (process II), the starting powder was coated by inorganic precursor, and then the organic binder was used to form the green body. The mold sample prepared using process II showed the higher strength value than that using process I, owing to the inclement effect on the glassfication efficiency by the loss of inorganic precursor in process I. The prepared real mold was perfectly produced and the casted product showed a clean surface without defects such as dross, nonmetallic inclusions, and crack. Consequently, the new inorganic binder system could be applied for preparing the mold for the thin-wall casting having high mechanical properties

    Transcriptional Regulator TonEBP Mediates Oxidative Damages in Ischemic Kidney Injury

    Get PDF
    TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI

    Robustness of the intrinsic anomalous Hall effect in Fe3GeTe2 to a uniaxial strain

    Full text link
    Fe3GeTe2 (FGT), a ferromagnetic van der Waals topological nodal line semimetal, has recently been studied. Using first-principles calculations and symmetry analysis, we investigate the effect of a uniaxial tensile strain on the nodal line and the resultant intrinsic anomalous Hall effect (AHE). Our results reveal their robustness to the in-plane strain. Moreover, the intrinsic AHE remains robust even for artificial adjustment of the atomic positions introduced to break the crystalline symmetries of FGT. When the spin-orbit coupling is absent, the nodal line degeneracy remains intact as long as the inversion symmetry or the two-fold screw symmetry is maintained, which reveal that the nodal line may emerge much more easily than previously predicted. This strong robustness is surprising and disagrees with the previous experimental report [Y. Wang et al., Adv. Mater. 32, 2004533 (2020)], which reports that a uniaxial strain of less than 1 % of the in-plane lattice constant can double the anomalous Hall resistance. This discrepancy implies that the present understanding of the AHE in FGT is incomplete. The possible origins of this discrepancy are discussed.Comment: 7 pages, 3 figure

    Mid-term results in patients having tricuspidization of the quadricuspid aortic valve

    Get PDF
    BACKGROUND: Quadricuspid aortic valve (QAV) is a rare congenital anomaly. We investigate the mid-term results of aortic valve reconstruction by tricuspidization in patients with QAV. METHODS: We analyzed the outcome of eight consecutive patients who underwent aortic valve reconstruction surgery (AVRS) with pericardial leaflets with symptomatic quadricuspid aortic valve (QAV) disease between December 2007 and May 2012. AVRS consists of leaflet reconstruction and fixation of the sino-tubular junction in order to maintain coaptation of the new valve. RESULTS: Six males and two females were included; ages ranged from 19 to 63 years (mean age, 51 years). According to Hurwitz and Roberts’s classification, three patients had type A, three patients had type B, one patient had type C, and one patient had type E. All patients had significant aortic regurgitation (AR): moderate in three patients, moderate to severe in one patient, and severe in four patients. Concomitant ascending aorta wrapping with an artificial vascular graft was performed in one case. There was no occurrence of mortality during the follow-up period (42.4 ± 18.0 months). No redo-operation was required. The NYHA functional class showed improvement from 2.1 ± 0.2 to 1.1 ± 0.2 (p = 0.008). The latest echocardiograms showed AR absent or trivial in seven patients, and mild in one patient. The aortic valve orifice area index (AVAI) was 1.03 ± 0.49 cm(2)/m(2). Compared with preoperative echocardiograms, the left ventricular (LV) ejection fraction showed improvement from 57.6 ± 17.0 to 63.7 ± 13.2% (p = 0.036); the end-diastolic and end-systolic LV dimensions showed a significant decrease, from 63.5 ± 9.6 to 49.5 ± 3.1 mm (p = 0.012) and 43.6 ± 11.8 to 32.1 ± 5.4 mm (p = 0.012), respectively. CONCLUSION: In patients with QAV, AVRS with tricuspidization showed satisfactory early and mid-term results. Long-term follow-up will be necessary in order to study the durability of AVRS; however, it can be considered as a potential standard procedure

    Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton.

    Get PDF
    Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior-posterior (A-P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A-P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11-/- mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning
    corecore