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1. Introduction

Multiple myeloma (MM) is a clonal B-cell malignancy that is currently incurable with con‐
ventional chemotherapy, even if high-dose chemotherapy with autologous or allogeneic
hematopoietic stem cell transplantation (HSCT) and the development of novel molecular
target agents have resulted in a marked improvement in overall survival [1, 2]. Allogeneic
HSCT, which induces a clinically significant immune-mediated allogeneic graft-versus-
myeloma (GVM) effect, has provided the framework for the development of immunothera‐
peutic strategies [3, 4]. To prolong the survival of patients with MM, who are undergoing
allogeneic HSCT, a donor lymphocyte infusion can be used successfully as a salvage therapy,
which is based on the GVM effect in some cases of MM that relapse after allogeneic HSCT [5,
6]. A clinically significant immune-mediated GVM effect provides the framework for the
development of immune-based therapeutic options that use antigen-presenting cells (APCs)
with increased potency, such as dendritic cells (DCs), in MM [6].

DCs are the most potent APCs for initiating cellular immune responses through the stimulation
of naive T cells. Because of their ability to stimulate T cells, DCs act as links between innate
immunity and adaptive immunity in antitumor immune responses [7]. DCs orchestrate a
variety of immune responses by stimulating the differentiation of naïve CD4+ T cells into helper
T effectors such as Th1, Th2 or Th17 type [8, 9]. Cytokines secreted by DCs at the time of initial
T cell stimulation play an important role in the subsequent differentiation of effector T cells.
Th1 cells, through interferon-gamma (IFN-γ) production, regulate antigen presentation and
immunity against intracellular pathogens [8]. DC-based vaccines have become the most
attractive tools for cancer immunotherapy and have been used in more than 20 malignancies;
most commonly melanoma, renal cell carcinoma, prostate cancer and colorectal carcinoma
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[10]. Cellular immunotherapy using DCs is emerging as a useful immunotherapeutic modality
to treat MM [11]. While antigen-specific cytotoxic T lymphocytes (CTLs) and immune response
can be induced by DC vaccination in MM patients, clinical responses so far have been largely
unsatisfying to be observed only in a minority of treated patients with MM. Progress in
understanding DC biology in cancer patients and the recruitment of suppressive cells of the
adaptive and innate immune system in antitumor immunity of cellular immunotherapy is
leading to new concept which aims at improved immune and clinical outcomes in MM. New
concept is developing to generate novel therapeutic targets that could restore DC capacity to
prime T cells and trigger effective anticancer responses in combination with other therapies to
offset tumor-induced suppression in MM.

2. Dendritic cell in myeloma immunity

DCs have a potent antigen-specific T cell stimulatory capacity and therefore should be
considered to the one of the promising antitumor immunotherapeutic options. In tumor-
specific immunity, secreted products or fragments from tumor cells enter into DCs through
the endosome and are processed and presented on MHC class molecules of DCs [12]. Processed
antigens presented on these molecules of DCs are recognized by CD4+ T helper cells, which
not only enhance to the CD8+ T cell response but also facilitate to develop a humoral immune
response for surface antigens expressed on the tumor cells. The antigens presented on MHC
class I are recognized by CD8+ CTLs, which have a direct cytotoxic effect on tumor cells.
Unfortunately, patients with MM have basically dysfunctional DCs that are functionally
defective, evidenced by the decreased number of circulating precursors of DCs as well as the
impaired T cell stimulatory capacities compared with normal controls [13, 14]. The defective
functions of DCs in patients with MM are partially attributed to the production of IL-6 and
other tumor-derived factors. DCs in MM patients are a target of tumor-associated suppressive
factors, such as IL-10, transforming growth factor- beta (TGF-β), vascular endothelial growth
factor (VEGF), and IL-6, resulting in their aberrant functions and impaired development of
effector functions in tumor-specific lymphocytes [15]. There were only few patients with MM
who responded clinically to vaccination with antigen-loaded autologous DCs. There may be
several reasons for this failure from MM patients itself. MM is believed to induce immunopa‐
resis that interferes with DC function and hence affects the effective antitumor immune
responses in these patients. They are able to escape immune surveillance by down-regulation
of immune markers as well as through the production of immunosuppressive cytokines by
the tumor cells or by activation of suppressor cells such as regulatory T cells and myeloid cells.
Myeloma cells can produce immuno-inhibitory cytokines, such as IL-10, TGF-β, VEGF, and
IL-6, which play major roles in the pathogenesis of MM [15]. In addition, the survival and
proliferation of myeloma cells are partially facilitated by impaired endogenous immune
surveillance against tumor antigens, including the abrogation of DC function, by constitutive
activation of the signal transducer and activator of transcription 3 (STAT3) [13]. Impairment
in both humoral and cellular immunity in MM is associated with impaired B cell responses;
decreased T cell numbers including CD4+ T cells and impaired CTL responses; and dysfunction
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of natural killer (NK) cells and NKT cells responses [16-19]. In addition, the recruitment and
expansion of CD4+CD25+ regulatory T cells (Tregs) in the suppression of tumor immunity has
been reported in MM patients [20, 21]. More recently, the proportion of CD14+HLA-DR-/low

myeloid-derived suppressor cells (MDSCs) and CD4+ forkhead box P3 (FoxP3)+ Tregs cells was
increased in MM patients at diagnosis, resulting in a significant impediment of immune cells
related to cancer immunotherapy [22].

3. Current DC vaccination research in MM

Usually, ex vivo DCs were generated from circulating blood precursors (i.e. monocytes) or bone
marrow progenitor cells and educated them with myeloma-associated antigens prior to
vaccination to patients with MM.

3.1. Idiotype-pulsed DCs

Immunoglobulin idiotype (Id) is a tumor-specific antigen that is produced by each B cell tumor
clone. Id protein has been used for immunotherapy in patients with MM [23, 24]. Id vaccination
could induce immune responses by both antibodies and Id-specific T cells, including CD4+ and
CD8+ T cells, through the presentation of Id protein on the surface of professional APCs [24].
Id-specific CTL lines that kill autologous primary myeloma cells in vitro have been generated
[25, 26]. Autologous DCs that were generated from MM patients have been shown to efficiently
endocytose different classes of Id proteins, and autologous Id-specific CTLs that were gener‐
ated by Id-pulsed DCs were able to recognize and kill autologous primary myeloma cells in
vitro [25, 26]. Various studies of DC-based Id vaccination in MM have been reported [27-34].
Although Id-specific CTLs and immune responses could be induced in some patients, clinical
responses have rarely been observed after vaccination possibly because Id protein is a weak
antigen and immature DCs have been used in some studies [27].

3.2. Myeloma-associated antigens-based DC immunotherapy

In general, the production of DC vaccines using whole tumor antigens has become a promising
tool for immunotherapy against MM. There are several types of myeloma-associated antigen
for loading onto DCs: loading with myeloma lysates [35, 36], loading with dying myeloma
cells [37-39], transfection with myeloma-derived RNA [40], pulsing with myeloma-derived
heat shock protein (HSP) gp96 [41, 42], and hybridization with myeloma cells [43, 44]. These
techniques have the advantage of allowing the presentation of multiple epitopes to MHC on
DCs, therefore inducing polyclonal T cell responses from many potentially unknown tumor-
associated antigens (TAAs) and reducing the probability of immune escape by a single TAA.

Various myeloma-associated antigens that may induce immune responses from DC-based
vaccines have been identified in MM patients. MUC1-specific CTLs that were induced in
vitro using peptide-pulsed DCs or plasma cell RNA-loaded DCs efficiently killed not only
target cells pulsed with the antigenic peptide but also MM cells [40, 45]. DCs transfected with
PTD-NY-ESO-1 protein can induce CD8+ cellular antitumor immunity superior to that

Cellular Immunotherapy Using Dendritic Cells in Multiple Myeloma: New Concept to Enhance Efficacy
http://dx.doi.org/10.5772/54100

181



achieved with NY-ESO-1 protein alone [46]. Sp17-specific HLA class I-restricted CTLs were
successfully generated by DCs that had been loaded with recombinant Sp17 protein and were
able to kill autologous tumor cells that expressed Sp17 [47]. The overexpression of hTERT on
MM compared to the expression levels in normal cells indicated that this telomerase also could
be used as a myeloma-associated antigen. hTERT was capable of triggering antitumor-CTL
responses and killing hTERT+ tumor cells [48]. Recently, a report demonstrated that activated
T lymphocytes were able to successfully kill myeloma cells after stimulation by DCs loaded
with hTERT- and MUC1-derived nonapeptides [49]. DKK1, a novel protein that is not
expressed in most normal tissues but is expressed in almost all myeloma cells, may be an
important antigenic target for anti-myeloma immunotherapy. DKK1-specific CTLs that were
generated by DCs pulsed with DKK1 peptides were specifically lysed by autologous primary
myeloma cells and DKK1-positive cell lines [50].

4. New concepts to enhance the efficacy of cellular immunotherapy in MM

4.1. How to enhance the efficacy of DC vaccinations

Because of unsatisfied clinical response of DC vaccination trials in MM, a number of groups
have looked at whether the DC vaccination may be more effective if better cytokine combina‐
tions are used to enhance DC function, effective tumor antigens are investigated to use,
suppressive signal transcriptions are blocked to overcome defective DC function, the interac‐
tion with immunosuppressor cells is interrupted to avoid the effect of these suppressor cells,
or DC vaccines need to be combined with other therapies.

4.2. The next generation of DCs

To improve DC vaccination, the investigators exploit to the microbial activation signals leading
to generate potent DCs with high secretion of cytokines such as IL-12p70, which generate
strong tumor-specific Th1 response and helper function for the generation of memory T cells,
high production of polarizing signals, which help the generation of high avidity in CTLs that
may be resistant to tumor microenvironment, and strong costimulation mediated via several
costimulatory molecular pathways [51, 52]. This induces to eliminate Tregs and block tumor
microenvironment results in the full activity of elicited CTLs and tumor rejection.

The initial phase of DC-based vaccines involving immature or partially-mature “first-genera‐
tion” DCs has been reported [53, 54]. However, such DCs express suboptimal levels of
costimulatory molecules and constitute weaker immunogens than subsequently implemented
mature DCs, the “second-generation” of clinically applied standard DCs (sDCs), which
induced by cytokine cocktails containing IL-1β/TNF-α/IL-6/prostaglandin E2 (PGE2) [55].
However, to date, sDC vaccines still have some drawbacks, including the mediation of Th2
polarization by increased secretion of the immunosuppressive cytokine IL-10 from DCs and
high activity in activating Tregs [56, 57]. Therefore, several investigators, including our group,
have tried to develop new generation of potent DC that possess all required features for
inducing effective tumor-specific immune responses. We demonstrated the feasibility of
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inducing potent α-type 1-polarizing DCs (αDC1s) by exposing immature DCs to α-type 1-
polarizing cytokine cocktail containing IL-1β, TNF-α, IFN-α, IFN-γ, and polyinosinic:polycy‐
tidylic acid [poly(I:C)] to generate strong functional CTLs on average 20-fold higher than sDCs
[58-62]. Recently, we successfully generated αDC1s from MM patients with high expression
of costimulatory molecules, significant production of IL-12p70, and potent generation of
myeloma-specific CTLs [37, 38]. Such a novel strategy would provide improved potency of ex
vivo-generated DCs for cancer immunotherapy.

The other strategy to induce new potent DCs from patients with MM was the use of helper
cells to promote type 1-polarization of DCs. Indeed, it has been demonstrated that NK cells
play  a  major  immunoregulatory  role  in  the  development  of  protective  T  cell-mediated
immunity against intracellular pathogens and cancers [63]. Such helper activity of NK cells
is  at  least  partially  mediated  by  the  functional  modulation  of  DCs.  This  phenomenon
depended on the production of IFN-γ and TNF-α from the activated NK cells [63] and was
associated with enhanced cross-presentation of tumor antigen and the induction of Th1 and
CTL responses [39, 64, 65]. Recent data from our laboratory and other groups has demon‐
strated  that  NK-DC  interactions  promote  the  subsequent  induction  of  tumor-specific
responses in CD4+ and CD8+ T cells, allowing NK cells to act as helper cells in the develop‐
ment of type 1-polarized DCs in responses against cancer [39, 64, 65]. Resting NK cells that
are activated in the presence of toll-like receptor (TLR) agonists, IL-2, and IFN-α can induce
potent DCs with enhanced IL-12p70 production in vitro, generating strong antigen-specific
CTLs against myeloma cells [39].

We also found that the selected combinations of TLR agonists synergistically triggered a
Th1-polarizing capacity through production of high amounts of IL-12p70 [66]. However, the
major limitation of this combination was the decreased ability of these cells to migrate into
lymph nodes compared to that of conventional sDCs. When DCs are activated by individu‐
al TLR agonists, such as lipopolysaccharide (LPS) or poly(I:C), or by a combination of 2 TLR
agonists, all cells mature and produce high levels of bioactive IL-12p70 in early phase of
maturation and after subsequent stimulation with T cell-related DC activating signal CD40L.
In addition, the phenotyes of these matured DCs were markedly enhanced when a combina‐
tion of type I and type II IFN was added. These combinations of stimuli also regulated the
expression of CD38 and CD74, markers related to the full activation of DCs [67, 68]. We
demonstrated that, at the optimal concentration used to stimulate DCs, the combination of
2 TLR agonists with type I and II IFNs can be used to generate fully mature DCs that have
high migratory capacity and can maintain IL-12p70-producing capacity. The regulation of
CD38 and CD74 in DCs could in turn enhance the migratory activity of DCs in the presence
of a combination of 2 TLR agonists and IFNs [69].

Ursolic acid (URC) is isolated from Uncaria rhynchophylla and phytochemically classified as a
triterpene. Triterpene compounds have been identified as a unique class of natural products
possessing diverse biological activities. Recently, we reported that URC activates human DCs
in a fashion that favors Th1 polarization via the activation of TLR2- and/or TLR4-dependent
IL-12p70 and induces the production of IFN-γ by CD4+ naïve T cells [70]. In addition, combi‐
nation URC and IFN-γ enhanced the activation of DCs via promotion of IFN-γ-induced Th1
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cell polarization that was dependent on the activation of IL-12p70 and independent of TLR4
[71, 72]. The potential of natural products to enhance DC maturation and activation has
important implications for the use of DCs as a cancer vaccine.

4.3. New sources of myeloma-associated antigens for DC vaccines

Another important consideration to improve the efficacy of DC vaccination in patients with
MM is an effective tumor antigen, instead of using idiotype proteins with a weak antigenicity.
The use of whole tumor cells, instead of single antigen, may help to enhance antitumor effects
to target multiple tumor variants. It is necessary to use purified, optimized myeloma cells, if
possible, as a source of tumor antigens for loading onto DCs to generate potent myeloma-
specific CTLs [35]. However, it is not only impractical to obtain sufficient amounts of purified
autologous myeloma cells for tumor antigens in the clinical setting from patients with MM
and it is also unsuitable for those with a lower tumor burden status. As an alternative source
of tumor-relevant antigens, allogeneic tumor cells or established cancer cell lines have been
used to overcome the limitation in various tumors [37, 38]. DCs loaded with tumor antigens
derived from allogeneic myeloma cells could generate myeloma-specific CTLs against
autologous myeloma cells in patients with MM [37, 39]. The success of using an allogeneic
myeloma cell line as tumor antigens led to the possibility that allogeneic myeloma cells could
also be used as a viable source of tumor antigens in the context of appropriate major MHC
alleles to autologous CTLs. In addition, autologous DCs loaded with dying myeloma cells of
allogeneic matched monoclonal immunoglobulin subtype showed to generate potent myelo‐
ma-specific CTLs against autologous myeloma cells in MM patients [38] These findings
suggested that allogeneic myeloma cell lines and allogeneic matched monoclonal immuno‐
globulin subtype of myeloma were effective tumor antigens capable of inducing functional
CTLs against patients’ own myeloma cells.

Improved understanding of which specific anticancer agents lead to immunogenic cell death
and whether these process can enhance antitumor immunity may facilitate the mechanism
how chemotherapy and immunotherapy combination can induce immune responses against
cancer. Recently, we have worked to develop strategies that recover dysfunction of DCs caused
from loading tumor antigens through treatment of myeloma cells with a combination of the
selective JAK/STAT3 inhibitor, JSI-124, and a kind of proteasome inhibitor, bortezomib. We
observed that production of inhibitory cytokines, such as IL-10, IL-23, and especially IL-6,
which induces DC dysfunction in MM patients, was down-regulated in DCs loaded with dying
myeloma tumor cells that induced by these agents. Furthermore, phospho-STAT3 was also
down-regulated in the DCs. These DCs displayed a superior ability to induce myeloma-specific
responses of CTLs. More recently, we are investigating whether chaetocin could be used to
induce dying tumor cells for loading onto DCs to enhance myeloma-specific antitumor
responses. We show that anti-myeloma drug-induced dying tumor cells can be used as the
source of myeloma antigens to loading onto DCs that could elicit potent anti-myeloma activity
of CTLs due to the expression of HSP and cancer testis antigens as a mechanism of immuno‐
genic death of human MM cells.
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4.4. Blocking immunosuppressive activity during the loading of tumor antigens for DC
vaccines

The suppressive effects of tumor cells during DC generation have been explained previously
by the ability of the tumor microenvironment to suppress DC differentiation [73]. This process
can influence STAT3 and ERK phosphorylation, resulting in hyperactivation of STAT3 and
ERK, which may be responsible for defective generation of DCs [74]. The immune-mediated
antitumor effects of DCs are enhanced by inhibition of the JAK2/STAT3 pathway [75],
inhibition of p38 or activation of the MEK/ERK or MAP kinase pathways, and neutralization
of IL-6 [76]. Recently, we found that when MM-derived DCs were generated by loading tumor
lysates from autologous myeloma cells, these DCs showed lower phenotypic maturation, less
T cell stimulatory capacity, less CTL activity, and highly abnormal IL-6 and IL-12 secretion
compared to the secretion by unloaded DCs. Moreover, the levels of VEGF, phospho-STAT3,
and phospho-ERK1/2 in these DCs were significantly higher than in unloaded DCs. After
neutralization of VEGF activity, DC functions, signal transduction, and cytokine production
were returned to normal level. Therefore, inhibitory factors and abnormal signaling pathways
during maturation with tumor antigens in DCs may be responsible for the defective activity
of DCs in MM, and these abnormalities may be overcome by neutralizing the signaling that
would lead to a suppressed immune response [77].

5. Combination therapy: New concept to enhance efficacy of DC vaccines

Many factors contribute to the limited clinical efficacy of DC vaccines. The tumor microenvir‐
onment contains different kinds of inhibitory cells, such as Tregs and MDSC, and inhibitory
molecules, such as IL-10, IL-6, TGF-β, and VEGF, all of which prevent the activation of effector
T cells in response to DC responses [16-21, 23, 78, 79]. Although DC vaccines showed effective
antitumor effect in experimental ex vivo systems, they didn’t effectively induce strong immune
responses that were enough to kill tumors in vivo. Therefore, strategies to improve the efficacy
of DC vaccines are to overcome the immune tolerance/suppression induced by these cells,
which are involved in the use of a combination of DC vaccine with either stimulatory cytokines
or the targeting elimination of inhibitory cells and molecules in tumor microenvironment.

5.1. DC vaccine and cytokine combination

Cytokines, such as GM-CSF or IL-2, known to enhance cell-mediated immune responses may
be administered as adjuvants with the vaccines aiming to create an environment where specific
immune responses are readily induced [80, 81]. To enhance the efficacy of DC vaccination, Id-
pulsed DCs were combined with GM-CSF [80, 82-84], with immunogenic carrier molecules
such as KLH [27, 28, 31-33, 82, 85], or cytokine IL-2 [80, 83] to improve the effectiveness of these
DC vaccines in patients with MM. Recently, a phase I study was performed in patients with
MM using autologous DCs/tumor cells fusion in combination with GM-CSF administration at
the day of DC vaccination [86]. The expansion of circulating CD4+ and CD8+ T cells reactive
with autologous myeloma cells were detected in 11 of 15 evaluable patients. A majority of
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patients with advanced disease demonstrated disease stabilization. In a murine myeloma
model, mice were vaccinated with DC-plasmacytoma cell fusions and demonstrated that
administration of IL-12 with the vaccine resulted in potentiation of in vivo T cell proliferation
and cytotoxicity and eradication of established disease [87]. Therefore, the combination of DC
vaccine with stimulatory cytokines is a feasible approach to provide a new source of DC-based
vaccines for the development of immunotherapy against MM.

5.2. DC vaccine and chemotherapy combination

Chemotherapy can help to reverse the immunosuppression caused by cancers and also further
enhance the capacity of DCs to trigger antitumor immunity [88]. Accumulating evidence
indicates that conventional chemotherapy as well as radiotherapy selectively eliminates
immunosuppressive cells, triggers the activation of DCs, and enhances antigen cross-presen‐
tation. Furthermore, specific anticancer agents lead to immunogenic cell death of tumor cells
and these processes can enhance antitumor immunity.

Recent studies have shown that chemotherapeutic agents increase the efficacy of active or
adoptive antitumor immunotherapies through beneficial immunomodulatory effects [89, 90].
Cyclophosphamide eliminates the activities of tumor-induced suppressor T cells in tumor-
bearing hosts [90] and induces the production of immunostimulatory cytokines, such as type
I IFN [91]. In addition, low-dose cyclophosphamide has been shown to down-regulate
suppressor T cells and to decrease the production of TGF-β and IL-10 while inducing a
Th2/Th1 shift in the cytokine profile [92-94]. Low-dose cyclophosphamide may enhance the
antitumor efficacy of DC vaccines by increasing the proportion of IFN-γ secreting lymphocytes
and suppressing the proportion of CD4+CD25+FoxP3+ Tregs in tumor-bearing mice [95]. The
result of a clinical trial using allogeneic DC vaccines combined with low-dose cyclophospha‐
mide has revealed that the combination therapy could induce stronger antitumor responses
compared to the DC vaccine alone [96]. Recently, we demonstrated that a single administration
of low-dose cyclophosphamide before the first DC vaccination showed to augment antitumor
effects of DC vaccines to completely eradicate the tumor and to prolong the survival of
vaccinated mice [64].

Lenalidomide is a thalidomide analog that has more potent anti-myeloma effects and less
adverse effects [97]. Lenalidomide can induce apoptosis of myeloma cells, inhibit the produc‐
tion of cytokines (IL-6, VEGF, and TNF-α) in bone marrow of myeloma patients, and stimulate
T cell and NK cell proliferation, cytotoxicity, and cytokine (IL-2, IFN-γ) production [97]. In
addition, lenalidomide can inhibit the frequency and function of Tregs, resulting in inhibition
of Treg expansion and FoxP3 expression in cancer patients patients [98]. Interestingly, this
drug can also induce the activation of APC function, resulting in upregulation of CD40, CD80,
and CD86 in chronic lymphocytic leukemia [99]. Therefore, lenalidomide can be used as an
immunomodulatory drug in order to enhance immune responses against cancer. Our in vitro
study showed that lenalidomide enhanced the maturation and function of DCs in the presence
of LPS, resulting in synergistic stimulation of DCs to increase phenotype expression, IL-12p70
production, T cell stimulation capacities, and CTL activities against myeloma cells, and to
suppress the generation of Tregs. Moreover, our in vivo mouse myeloma model showed that
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a treatment combining the lenalidomide with DC vaccination markedly improved antitumor
effect by inhibiting immunosuppressor cells, recovering effector cells, and inducing superior
polarization of the Th1/Th2 balance in favor of the Th1 response. This immunomodulatory
effect may be a crucial component of the enhancer-like properties of lenalidomide in the context
of antitumor immunity against MM.

5.3. Chemotherapeutic agent can induce “immunogenic myeloma-cell death” to trigger
activation of DCs and to enhance cross-presentation of DCs

Most of chemotherapeutic agents kill tumor cells by the induction of apoptosis. Previously,
chemotherapy and immunotherapy have usually been regarded as unrelated therapy in the
treatment of cancers because chemotherapy-induced apoptotic cell death has long been
considered as non-immunogenic or inducing immune tolerance. Recently, apoptotic cell death
when coupled with inflammatory signals, such as HSPs, is clearly known to induce the
activation of DCs and triggers the immune response [100]. Some chemotherapeutic agents
could induce a type of tumor cell death that activates efficient antitumor immunity, so it is
called “immunogenic tumor-cell death”. Immunogenic tumor-cell death expresses danger
signals on the tumor cell surface or secretes immunostimulatory factors, such as HSPs,
calreticulin, high mobility group box 1 protein (HMGB1), and ATP, into the tumor microen‐
vironment, thereby promoting DC maturation and stimulating a powerful T cell immune
response [88].

Cyclophosphamide is well known as a potent cytotoxic and lymphoablative drug in conven‐
tional and high dosages. However, more recent work highlighted as an immunostimulatory
and/or antiangiogenic agent at low dosages, openning up novel indication in the field of cancer
immunotherapy. In recent reports, cyclophosphamide administration in tumor-bearing mice
induced pre-apoptotic surface translocation of calreticulin on tumor cells [101], which serves
as an “eat-me” signal for phagocytes [102] and the release of high-mobility group box1
(HMGB1) protein in the extracellular milieu [101], which constitutes a “danger signal”
triggering activation of the DC processing machinery [103]. These events are prerequisites for
adequate engulfment of tumor apoptotic material and optimal CD8+ T cell cross-priming by
DCs [102, 103].

HSPs are intracellular chaperones for many proteins, but they can also be expressed on the cell
surface or even be released under stress conditions [104, 105]. HSP acts as an adjuvant in
initiating the activation of DCs or as protein vehicle to facilitate the presentation of antigen
peptides to T cells. Spisek et al. [106] reported that uptake of myeloma cells by DCs after tumor
cell death induced by bortezomib leads to the induction of antitumor immunity and enhances
DC-mediated tumor immune response, indicating the probability mechanism due to the
expression of HSP90 on the surface of dying cells, thereby facilitating the activation of DCs in
response to dying tumor cells. Our study also found that HSPs released from dying tumor
cells, which were induced by a combination of the selective JAK/STAT3 inhibitor JSI-124 and
proteasome inhibitor bortezomib, act on tumor cells to recover DC dysfunction and to induce
cytokine and chemokine production from DCs, resulting in generation of potent myeloma-
specific CTL response against myeloma cells.
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5.4. Possible combination DCs and other approaches

In the presence of regulatory and suppressive environment, it is very difficult to elicit or induce
effective immune response after DC vaccination in cancer patients. To improve the clinical
outcomes, DC vaccines need to be combined, in particular for patients at advanced stages, with
other approaches that offset the suppressive tumor environment [107]. It has been known that
the specific depletion of CD4+CD25+ Treg cells by anti-CD25 antibodies increases the efficiency
of the anti-tumor immune response of tumor-bearing animals, although the tumors are not
completely rejected [108]. An increased number of CD4+CD25+FoxP3+ regulatory T cells have
been demonstrated in patients with MM [22, 109]. Depletion of Treg may have resulted in
improved response to tumor vaccine in animal models and a clinical study. In addition,
blocking antibodies or soluble receptors were exploited for the blockade of suppressive
cytokines in the tumor microenvironment, such as IL-10 [110], IL-13 [111], TGF-β [112] and
VEGF [113]. Such strategies can be used to block immune-inhibitory signals in lymphocytes
as illustrated by anti-CTLA-4 [114] and/or anti-PD1 [115] or to block their ligands expressed
on tumors.

Another strategy to improve DC vaccination is combination approach with other immune cells,
including adoptive T cells or NK cells. In adoptive T-cell transfer, one can seek to modulate
the number of regulatory T cells, and transfer a population of activated effector cells. The
combination of DC vaccination and adoptive T-cell transfer led to a more robust antitumor
response than the use of each treatment modality [116]. These findings illuminate a new
potential application for DC vaccination in the in vivo stimulation of adoptively transferred T
cells. Therefore, combining active and passive immunotherapies in the treatment of MM may
enhance the efficacy of tumor vaccine in the future.

6. Future perspectives

Progress in understanding DC biology in MM patients and the recruitment of suppressive cells
of the adaptive and innate immune system in antitumor immunity of cellular immunotherapy
is leading to new concept which aims at improved immune and clinical outcomes in MM. The
new generation of DCs may be a potential vaccine therapy for inducing the rate of tumor
responses and prolonging survival of patients with MM. Furthermore, information from
studies that combine DC vaccine with other therapies, including chemotherapy, radiation
therapy, molecular target agents, other immunotherapy (adaptive T cells or NK cells), or
adjuvants will have high impact on enhancing therapeutic immunity in MM by simultaneously
enhancing the potency of immune responses and offsetting immunoregulatory pathways.
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