18,302 research outputs found

    REGIONAL COST SHARE NECESSARY FOR RANCHER PARTICIPATION IN BRUSH CONTROL

    Get PDF
    Large-scale brush-control programs are being proposed in Texas to increase off-site water yields. Biophysical and economic simulation models are combined to estimate the effects of brush control on representative ranches in four ecological regions of the Edwards Plateau area of Texas. Net present values of representative ranches in three of four regions decrease with brush control. Cost shares necessary for ranches from the three regions to break even range from 7% to 31% of total brush-control costs. Any large-scale brush-control program will therefore require a substantial investment by the state of Texas.Agribusiness,

    Valley-selective optical Stark effect in monolayer WS2

    Full text link
    Breaking space-time symmetries in two-dimensional crystals (2D) can dramatically influence their macroscopic electronic properties. Monolayer transition-metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. While applying a magnetic field should in principle accomplish this task, experiments to date have observed no valley-selective energy level shifts in fields accessible in the laboratory. Here we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV via the optical Stark effect. These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological phases in 2D TMDs

    Stability of Uniform Shear Flow

    Full text link
    The stability of idealized shear flow at long wavelengths is studied in detail. A hydrodynamic analysis at the level of the Navier-Stokes equation for small shear rates is given to identify the origin and universality of an instability at any finite shear rate for sufficiently long wavelength perturbations. The analysis is extended to larger shear rates using a low density model kinetic equation. Direct Monte Carlo Simulation of this equation is computed with a hydrodynamic description including non Newtonian rheological effects. The hydrodynamic description of the instability is in good agreement with the direct Monte Carlo simulation for t<50t0t < 50t_0, where t0t_0 is the mean free time. Longer time simulations up to 2000t02000t_0 are used to identify the asymptotic state as a spatially non-uniform quasi-stationary state. Finally, preliminary results from molecular dynamics simulation showing the instability are presented and discussed.Comment: 25 pages, 9 figures (Fig.8 is available on request) RevTeX, submitted to Phys. Rev.

    Accurate exchange-correlation energies for the warm dense electron gas

    Get PDF
    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average NN-body density matrices for uniform electron gas systems of up to 10124^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the kk-space configuration path-integral formalism disagree by up to ∼\sim1010\% at certain reduced temperatures T/TF≤0.5T/T_F \le 0.5 and densities rs≤1r_s \le 1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that DMQMC can calculate free energies directly and present exact free energies for T/TF≥1T/T_F \ge 1 and rs≤2r_s \le 2.Comment: Accepted version: added free energy data and restructured text. Now includes supplementary materia

    Long-Ranged Correlations in Sheared Fluids

    Full text link
    The presence of long-ranged correlations in a fluid undergoing uniform shear flow is investigated. An exact relation between the density autocorrelation function and the density-mometum correlation function implies that the former must decay more rapidly than 1/r1/r, in contrast to predictions of simple mode coupling theory. Analytic and numerical evaluation of a non-perturbative mode-coupling model confirms a crossover from 1/r1/r behavior at ''small'' rr to a stronger asymptotic power-law decay. The characteristic length scale is ℓ≈λ0/a\ell \approx \sqrt{\lambda_{0}/a} where % \lambda_{0} is the sound damping constant and aa is the shear rate.Comment: 15 pages, 2 figures. Submitted to PR

    Transport Far From Equilibrium --- Uniform Shear Flow

    Full text link
    The BGK model kinetic equation is applied to spatially inhomogeneous states near steady uniform shear flow. The shear rate of the reference steady state can be large so the states considered include those very far from equilibrium. The single particle distribution function is calculated exactly to first order in the deviations of the hydrodynamic field gradients from their values in the reference state. The corresponding non-linear hydrodynamic equaitons are obtained and the set of transport coefficients are identified as explicit functions of the shear rate. The spectrum of the linear hydrodynamic equation is studied in detail and qualitative differences from the spectrum for equilibrium fluctuations are discussed. Conditions for instabilities at long wavelengths are identified and disccused.Comment: 32 pages, 1 figure, RevTeX, submitted to Phys. Rev.

    The Influence of Fallback Foods on Great Ape Tooth Enamel

    Get PDF
    Lucas and colleagues recently proposed a model based on fracture and deformation concepts to describe how mammalian tooth enamel may be adapted to the mechanical demands of diet (Lucas et al.: Bioessays 30[2008] 374-385). Here we review the applicability of that model by examining existing data on the food mechanical properties and enamel morphology of great apes (Pan, Pongo, and Gorilla). Particular attention is paid to whether the consumption of fallback foods is likely to play a key role in influencing great ape enamel morphology. Our results suggest that this is indeed the case. We also consider the implications of this conclusion on the evolution of the dentition of extinct hominins

    Fracture in teeth—a diagnostic for inferring bite force and tooth function

    Get PDF
    Teeth are brittle and highly susceptible to cracking. We propose that observations of such cracking can be used as a diagnostic tool for predicting bite force and inferring tooth function in living and fossil mammals. Laboratory tests on model tooth structures and extracted human teeth in simulated biting identify the principal fracture modes in enamel. Examination of museum specimens reveals the presence of similar fractures in a wide range of vertebrates, suggesting that cracks extended during ingestion or mastication. The use of ‘fracture mechanics’ from materials engineering provides elegant relations for quantifying critical bite forces in terms of characteristic tooth size and enamel thickness. The role of enamel microstructure in determining how cracks initiate and propagate within the enamel (and beyond) is discussed. The picture emerges of teeth as damage-tolerant structures, full of internal weaknesses and defects and yet able to contain the expansion of seemingly precarious cracks and fissures within the enamel shell. How the findings impact on dietary pressures forms an undercurrent of the study
    • …
    corecore