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ABSTRACT Lucas and colleagues recently proposed
a model based on fracture and deformation concepts to
describe how mammalian tooth enamel may be adapted
to the mechanical demands of diet (Lucas et al.: Bioes-
says 30[2008] 374-385). Here we review the applicability
of that model by examining existing data on the food me-
chanical properties and enamel morphology of great apes

During certain times of the year, many primates resort
to less preferred foods when preferred foods are scarce.
The importance of these “fallback foods” has been the
subject of much debate (Constantino and Wright, in
press). Nevertheless, the study of such foods is proving
to be valuable to our understanding of primate ecology
and evolution, particularly regarding selective pressures
leading to morphological change (Lambert, 2007; Mar-
shall and Wrangham, 2007). Fallback foods have been
invoked as the reason for the thick tooth enamel in grey-
cheeked mangabeys (Lambert et al., 2004), and as a
likely influence on the masticatory morphology and be-
havioral ecology of great apes and early hominins (Laden
and Wrangham, 2005; Grine et al., 2006; Lambert, 2007;
Ungar, 2007; Ungar et al., 2008; Vogel et al., 2008).

In this article, we examine whether fallback foods
have influenced great ape enamel morphology. Our
approach is in two main parts. First, we review mechani-
cal property data indicating that fallback foods of great
apes tend to be tougher or harder than their preferred
foods. We then present a model explaining how tooth
enamel responds to loading (Lucas et al., 2008; Lawn et
al.,, 2009) and argue that several aspects of the dental
morphology of these apes may be explained in terms of
adaptation to the consumption of fallback foods. We
focus principally on enamel thickness and tooth size,
with some discussion on the potential role of prism
decussation. Finally, we consider the relevance of these
conclusions to the dentition of extinct hominins.

GREAT APE DIET

Understanding the complex relationship between tooth
and food requires an examination of underlying mechan-
ical properties. Figure 1 lists values of two such mechan-
ical properties, “elastic modulus” (resistance to reversible
deformation) and “toughness” (resistance to fracture), for
a representative selection of primate foods and dental
tissues. (The elastic modulus is often referred to as
“hardness,” and we shall follow this wusage here,
although strictly hardness applies to permanent, plastic
deformation.) Note the very large range of values cov-

©2009 WILEY-LISS, INC.

fracture mechanics; diet; evolution

(Pan, Pongo, and Gorilla). Particular attention is paid to
whether the consumption of fallback foods is likely to
play a key role in influencing great ape enamel morphol-
ogy. Our results suggest that this is indeed the case. We
also consider the implications of this conclusion on the
evolution of the dentition of extinct hominins. Am J
Phys Anthropol 140:653-660, 2009.  ©2009 Wiley-Liss, Inc.

ered in Figure 1, highlighted by the use of logarithmic
coordinates. Note also the considerable variability in the
data, indicated by the horizontal bars. Even allowing for
these factors, the opposite trends in the modulus and
toughness data are clear; softer and more compliant
materials tend to be tougher. In particular, tooth enamel
is hard but not very tough, meaning that while it is well
suited to breaking down food, it is also relatively brittle.
Notwithstanding the difficulty of determining dietary
preference in wild populations, the preferred food of com-
mon chimpanzees (Pan troglodytes), Bornean orangutans
(Pongo pygmaeus), and lowland gorillas (Gorilla gorilla
gorilla and Gorilla beringei graueri) appears to be soft,
ripe fruit. Each species supplements its diet with other
items, but studies correlating fruit availability with time
spent feeding indicate that if ripe fruit is present, all of
these apes prefer it and select it (Leighton, 1993; Nishi-
hara, 1995; Remis, 1997; Doran and McNeilage, 1998;
Knott, 1998; Delgado and Van Schaik, 2000; Conklin-
Brittain et al., 2001; Remis et al., 2001; Doran et al.,
2002; Rogers et al., 2004; Vogel et al., 2008). When ripe
fruit is scarce or unavailable, each group has a some-
what different behavioral response. Chimpanzees tend to
continue searching out ripe fruit, especially figs, and
they do so by fissioning into smaller parties and some-
times increasing their range (Tutin et al., 1991; Furuichi
et al.,, 2001; Yamagiwa and Basabose, in press). Some
chimpanzee populations also expand the breadth of their
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Fig. 1. Elastic modulus and fracture toughness of primate dental tissues and selected food items that may contact them. Note

that the horizontal axes are in logarithmic scale. Note also the opposite data trends for modulus versus toughness (From Hepburn
and Chandler, 1976; Baker et al., 1959; Hillerton et al., 1982; Lucas et al., 1991; Lawn, 1993; Spatz et al., 1996; Strait and Vincent,
1998; Niklas, 1999; Cuy et al., 2002; Schofield et al., 2002; Lucas et al., 2004; Vogel et al., 2008).

diet, either by increasing their consumption of low-qual-
ity, terrestrial herbaceous vegetation (THV) and herba-
ceous pith (Wrangham et al., 1991, 1996, 1998; Malenky
and Wrangham, 1994; White, 1996; Furuichi et al.,
2001), or through the addition of more animal products
(Yamagiwa et al., 1996; Yamagiwa and Basabose, in
press).

Bornean orangutans fall back through much of the
year on unripe fruits and hard seeds. Soft, ripe fruit is
relatively scarce in most orangutan habitats except dur-
ing a mast, and so hard fallback foods make up a signifi-
cant portion of the diet. Moreover, the seeds of fallback
unripe fruits eaten by orangutans appear to be the hard-
est foods in their diet. For example, the hardest foods
eaten by orangutans at the site of Gunung Palung are
probably the seeds of Lithocarpus (Fagaceae) (A. Mar-
shall, personal communication). Orangutans seek out
these and other immature seeds when available
(Leighton, 1993), probably because they are softer than
ripe seeds (Vogel et al., 2008). However, the fact that
such seeds are eaten during times of low overall fruit
availability highlights their potential role as fallback
foods. It has been reported that orangutans at Tuanan
and other sites eat the seeds of Mezzettia parviflora (Gal-
dikas, 1982; Vogel et al., 2008). These seeds have a mod-
ulus greater than 7 GPa (Lucas et al., 1991) while the
vast majority of orangutan foods at Tuanan have maxi-
mum elastic modulus values under 9 MPa (Vogel et al.,
2008). Therefore, Mezzettia seeds represent a potential
1,000-fold increase in elastic modulus over more typical
food items. In laboratory tests, Lucas determined that
mature Mezzettia seeds require a load over 2000 N to
cause fracture (Lucas et al., 1994). (Vogel and colleagues
were unable to obtain property data for these seeds at
Tuanan because the values exceeded the capacity of
their equipment.) When unripe fruits and seeds are
unavailable, orangutans also fall back on bark and
leaves (Rodman, 1977; Knott, 1998; Delgado and Van
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Schaik, 2000; Vogel et al., 2008), and these appear to be
the toughest foods eaten at Tuanan (Vogel et al., 2008).

Lowland gorillas fall back largely on low-quality THV,
as well as bark, woody pith, and fibrous fruits (Rogers
et al., 1988, 1994, 2004; Yamagiwa et al., 1996; Tutin
et al., 1997; Doran and McNeilage, 1998; Conklin-Brit-
tain et al., 2001; Doran et al., 2002; Yamagiwa and Basa-
bose, in press). While there are few mechanical property
data available on lowland gorilla fallback foods, several
indirect lines of data exist to support the idea that the
fallback foods of these animals are tougher than their
preferred foods. First, “low-quality” THV is higher in
fiber than preferred THV, and increasing the amount of
fiber increases fracture toughness (Hill and Lucas, 1996;
Lucas et al., 2000). Second, lowland gorillas eat bark as
a fallback food (Rogers et al., 1994), and mechanical
property data on barks eaten by mountain gorillas show
that these foods can be exceptionally tough (Elgart-
Berry, 2004). In fact, barks are reportedly the toughest
foods that mountain gorillas eat, considerably tougher
than any bark consumed by orangutans and at least four
times tougher than any reported chimpanzee food
(Dominy, 2001). Lowland gorillas also consume woody
pith as a fallback food. As opposed to nonwoody pith,
woody pith is lignified meaning that the compound lig-
nin has filled in spaces in the plant’s cell walls. This pro-
cess increases the structural complexity and anisotropy
of the cell walls (Esau, 1977), thereby increasing the
toughness of the tissue (Lucas et al., 2000).

THE RESPONSE OF TOOTH ENAMEL TO
BITING AND CHEWING FORCES

In recent studies, our enamel adaptation hypothesis
has been presented in terms of fracture and deformation
mechanics of teeth (Lucas et al., 2008; Lawn et al.,
2009). Those studies identify enamel thickness and tooth
size as key variables that determine the level of biting



FALLBACK FOODS AND GREAT APE TOOTH ENAMEL

force any given dentition may sustain without cata-
strophic fracture. Of course, there are other factors that
can play a role in tooth mechanics, notably those relat-
ing to fine details in the shape (e.g., molar flare, hypso-
donty), but we consider these to be secondary in the
broader context of tooth failure. The tooth structure is
modeled as a bilayer consisting of a hard hemispherical
shell of uniform thickness d and cuspal radius r. encas-
ing a compliant, soft interior. Load is applied at the top
surface by an “indenter” (i.e., opposing dentition or food
particle) of characteristic radius r;. We focus only on
essential results here, without exploring the underlying
mathematical relations.

It might at first seem logical that damage to teeth dur-
ing mastication would initiate at or near the point of
contact (i.e., on the external surface of the tooth). If this
were to be the case, the damage would be determinable
exclusively by the local Hertzian contact stresses (Lawn,
1998). The governing geometric dimension is then the
“composite radius” 1/r = 1/r; + 1/r., where r; is the radius
of curvature of the indenter and r, is the radius of curva-
ture of the tooth cusp. In this event, the thickness of the
enamel is not at all relevant. It turns out that enamel,
although brittle, is more susceptible to “yield” from small
local contacts, with resulting plastic deformation, than it
is to fracture. The plasticity is accommodated principally
by sliding within the weak protein sheaths that bind the
mineralized prisms (He and Swain, 2007). Such sliding is
a general feature of fibrous biological composites (Keckes
et al., 2003; Fratzl et al., 2004), and can occur even if the
fibers (prisms) are interwoven (Yang et al., 2005; Cox and
Yang, 2006) or are loaded off-axis (Fratzl et al., 2004).
The critical load to induce this yield mode is termed Py,
whose value is determined (primarily) by the enamel
modulus and hardness. The plastic deformation disrupts
the local microstructure, ultimately crumbling the mate-
rial within the deformation zone, and is the main contrib-
utor to wear of the dentition.

However, the enamel is not at all immune to fracture.
An illustration is shown in Figure 2 of a human molar
subjected to loading with a hard indenter at the top sur-
face (Lawn et al., 2009). One form of fracture comes
from the deformation process itself, as the microstruc-
ture progressively degrades and develops nuclei for
ensuing “median” cracks. These cracks emerge from the
plastic zone (seen as the flattened cusp in Fig. 2), and
propagate downward toward the enamel-dentine junc-
tion (EDJ). Because it requires less energy for cracks to
travel along weak material interfaces than across them,
these cracks tend to propagate on paths between the
enamel prisms (Rasmussen et al., 1976; Xu et al., 1998;
He and Swain, 2007). Once they penetrate through the
thickness of the enamel, the median cracks spread longi-
tudinally around the side walls, ultimately reaching the
cervical margin. Attainment of this stage of fracture is
deemed “failure.” The governing mechanical property is
now toughness. A second form of near-surface fracture
is “cone” cracking, widely reported in isotropic brittle
materials but less likely in enamel because of the diffi-
culty of propagating such cracks laterally across the
mineralized prism structure (Lawn et al., 2009).

A different form of fracture is “radial” cracking. Radial
cracks initiate below the contact, but at the EDJ, from
flexure of the enamel on a more compliant dentine
underlayer (Lawn et al., 2001, 2004, 2007; Rhee et al.,
2001; Qasim et al., 2005, 2006, 2007; Rudas et al., 2005).
In this scenario, the thickness d of the enamel is the cru-
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5mm

Fig. 2. Example of deformation and fracture of an extracted
human molar tooth loaded with a metal disk. Some yield flat-
tening has occurred at the upper cusp, and longitudinal cracks
have propagated between the contact zone and the tooth mar-
gin. These cracks are confined to the thickness of the enamel
coat (Reproduced from Lawn BR et al. Predicting failure in
mammalian teeth. Journal of the Mechanical Behavior of Bio-
medical Materials 2:33-42.© 2009 Elsevier).

cial dimension for crack initiation, with the tooth size r,
a secondary factor. The dependence on d is quadratic,
meaning that it requires four times the load to initiate
cracks in enamel twice as thick. Once initiated, radial
cracks spread stably upward toward the occlusal surface
and sideways around the enamel walls. This latter, lat-
eral growth stage is stable, at least initially, and once
more the cracks extend continuously with increasing
load until they run around the entire side wall of the
enamel. In this advanced propagation stage the radial
crack is indistinguishable from median cracks; hence the
common terminology “radial-median.” The radial crack
failure load Pgrr depends to some extent on the cuspal
curvature r,, as well as on d.

Yet another form of fracture is that of “margin” crack-
ing. In this mode, cracks initiate at the cemento-enamel
junction (CEJ) and propagate longitudinally upward in a
stable manner, increasing in length with the applied
loading, somewhat analogous to their radial-median
counterparts but with growth in the opposite direction
(Ford et al., 2008). As with radial-median cracks, the fail-
ure load Pyr for margin cracks depends on tooth dimen-
sions, although somewhat less on d and more on r.. In
fact, Py scales approximately linearly with r,, whereas
Pgrr is much less dependent on r.. This change in depend-
ence reflects the fact that margin cracks are driven by
tensile stresses near the cervical base of the tooth crown;
these stresses are determined more by tooth size than by
enamel thickness, within the confines of a hemispherical
dome model. As alluded to above, other tooth shape fac-
tors, such as the presence of a cingulum and greater
tooth height (hypsodonty), may diminish Pyr by sup-
pressing initiation of margin cracks (Lucas et al., 2008).

A feature of all the fracture modes is the large incre-
ment in applied load required to drive them from first
inception to final failure. Teeth are brittle, but extremely
damage tolerant (Chai et al., 2009). It is arguable that
most teeth contain a high population of damage accumu-

American Journal of Physical Anthropology
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Fig. 3. Plot of critical loads to cause onset of yield at top
surface (Py), onset of radial cracks at EDJ (Pgr), and failure
from radial-median and margin cracks (Prr and Pyy), as a func-
tion of characteristic food (“indenter”) size r;. Yield plots shown
for three values of food modulus E; (see Fig. 1). At any given
value of r;, increasing load is equivalent to traversing upward
along an appropriate vertical line. Note wide range of critical
loads over food size and modulus range.

lation defects, and yet remain entirely functional. Much
higher loads still are required to cause adjacent cracks
to link up and delaminate the enamel from the dentine,
or to drive cracks into the dentine (Popowics et al.,
2001).

The responses of dentition to mastication depend not
only on the form and mechanical properties of the
enamel (e), but on the food “indenter” (i) as well (see
Fig. 1). Allowance for the properties of the food material
can be made via the Hertzian contact relations by substi-
tuting “effective radius” 1/r = 1/r; + 1/r, and “effective
modulus” 1/E = 1/E; + 1/E. into mathematical formulae
for Py (onset of yield), Pr (onset of radial cracking), Prp
(radial-median failure) and Py (margin failure) (Lucas
et al., 2008). A plot of these critical loads is given in
Figure 3 as a function of food particle radius r;, for E; =
100 GPa (direct tooth-tooth occlusal contact), 1 GPa
(moderately hard food) and 10 MPa (soft food), for
human molars (d = 1.2 mm, r. = 4 mm). On this Figure
3, increasing load is equivalent to traversing upward
along a vertical line, for an appropriate food size. The
dominant damage mode corresponds to the curve inter-
sected first along such a line. Note that the failure loads
Prr and Py are of comparable value in this case, and
independent of food properties. However, the initiation
load Py for yield is highly sensitive to both r; and E;, as
expected for a near-contact process. A salient point of
this graph is the very large range of critical loads cov-
ered by the logarithmic vertical axis, amounting to sev-
eral orders of magnitude. In this context, a factor of 2
would barely shift any of the curves on the plot, and so
the model is insensitive to minor uncertainties in
assumptions.

From Figure 3, we see that small, hard objects (low r;,
high E;) such as grits and phytoliths favor surface yield-
ing in the enamel. Large, hard objects (high r;, high E};)
such as seeds and nuts can cause longitudinal cracks to
grow to failure before incurring any yield. Soft foods (E;
< 1 GPa) tend to suppress both surface yield and deep
radial cracks by smothering the surface of the tooth and
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redistributing stresses to the tooth’s margins (Qasim et
al., 2007). Margin fractures can then result, leading to
abfraction failures (Grippo, 1991).

ENAMEL THICKNESS AND TOOTH SIZE

The perceived influence of different foods on the frac-
ture pattern of tooth enamel leads to differing predic-
tions regarding how tooth enamel may be adapted to
diet. Here we address how fracture is affected by enamel
thickness and tooth size. There have been two proposed
benefits to thick tooth enamel in mammals. First, it may
prolong the life of the tooth simply by increasing the
amount of hard material that must be worn through
before the softer underlying dentine is exposed (Jolly,
1970; Molnar and Gantt, 1977). Alternatively, thick
enamel may provide increased resistance to fracture
(Kay, 1981). Our model suggests that both hypotheses
may be correct in certain conditions. Small, hard objects
should cause surface wear from cumulative near-contact
yield, while large, hard objects may initiate and grow ra-
dial-median cracks that serve as the precursor to tooth
failure. Thicker enamel would help to alleviate both con-
ditions by increasing the amount of wear necessary to
expose the underlying dentine and increasing the force
required to fracture the enamel (Lucas et al., 2008).
Therefore, thick enamel would appear to confer a selec-
tive advantage for any mammal that chews or bites hard
foods. In this description, it is absolute enamel thickness
that appears in the critical load equations (Lawn et al.,
2009; Lawn and Lee, in press), and therefore determines
the failure condition. Tooth size also enters the equations
for critical loads. Basically, for given enamel thickness d,
critical loads Pgrr and Py will increase with characteris-
tic cuspal radius r.. This radius may be expected to scale
in some way with animal weight, although not in a lin-
ear manner (Teaford and Ungar, 2000). Hence thinner
enamel may be compensated to some degree by larger
tooth size.

Chimpanzees have thinner occlusal enamel than ei-
ther gorillas or orangutans, and this has been supported
in studies using both 2D (Smith et al.,, 2005) and 3D
(Kono, 2004; Kono and Suwa, 2008; Olejniczak et al.,
2008b) methods. In addition, chimpanzees have similar
lateral enamel thickness to orangutans and gorillas
(Kono and Suwa, 2008), but the smaller size of their
postcanine teeth (Pilbeam and Gould, 1974) makes them
more susceptible than the other great apes to margin
cracks. Thus, chimpanzee enamel morphology agrees
well with a fallback strategy of changing group structure
to continue searching out ripe fruit. The fact that the
lateral enamel thickness of chimpanzees is generally
greater than their occlusal enamel thickness (Kono and
Suwa, 2008) may be indicative of their occasional need
to consume leaves, THV, and herbaceous piths as fall-
back foods when figs are not available (Wrangham et al.,
1991, 1996; Malenky and Wrangham, 1994; White, 1996,
Dominy, 2001; Furuichi et al., 2001; Vogel et al., 2008;
Yamagiwa and Basabose, in press). However, these chim-
panzee fallback foods are not as tough as the fallback
foods of gorillas or orangutans (Vogel et al., 2008), allow-
ing chimpanzees to maintain their smaller tooth size
(and greater susceptibility to margin fractures).

As discussed above (Great Ape Diet), orangutans are
known to process fallback foods of relatively high hard-
ness with their postcanine teeth. Thicker enamel on the
occlusal surfaces of orangutan teeth is consistent with
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our model. The occlusal surface is specified because this
is where the food contacts the enamel and potentially
causes tensile stresses at the EDJ, and thicker occlusal
enamel inhibits these tensile stresses. Orangutans also
occasionally consume tough, pliable foods which tend to
smother the surface of the tooth, diminishing the contact
stresses there and redistributing tensile stresses to the
cervical margins (Qasim et al., 2007). Such stress redis-
tribution inhibits deep cracks but favors margin frac-
tures. Orangutans and chimpanzees have similar lateral
enamel thickness (Kono and Suwa, 2008), but the larger
size of orangutan postcanine teeth makes them less sus-
ceptible to margin fractures than chimpanzees.

Thick enamel has also been proposed as a tool to pro-
tect against surface wear caused by abrasion (contact
with abrasive substances), attrition (tooth-to-tooth con-
tact), or erosion (dissolution caused by acidic or corrosive
chemicals) (Jolly, 1970; Every, 1972; Seligman et al.,
1988; Gandara and Truelove, 1999; Kaidonis, 2008). Our
model indicates that large hard objects such as seeds
and hard fruits are likely to cause deep fractures (Lucas
et al.,, 2008), while small hard objects cause surface
wear. Therefore, the fallback foods of orangutans are
more likely to lead to fracture than wear (see Fig. 5 in
Lucas et al., 2008). It is possible that tooth wear could
result from phytoliths or grits in the plant foods of
orangutans, or corrosive acids in the fruits of orangu-
tans, and increased enamel thickness could then be an
evolutionary response to this loss of dental tissue. How-
ever, orangutans are typically not known to have heavily
worn or eroded teeth, and generally exhibit less wear
than either gorillas or chimpanzees (Welsch, 1967). It
is therefore most likely that the thick occlusal enamel
of orangutans is adaptive for protecting against deep
fracture.

Gorillas consume tougher fallback foods than the other
great apes and rely on these foods for a greater propor-
tion of their fallback diet. Their lateral enamel is similar
in thickness to that of the other great apes, but their rel-
atively larger tooth size gives them greater protection
from margin fractures. It is noteworthy that the occlusal
enamel of gorillas is also close in thickness to that of
orangutans. Since gorillas do not eat large, hard seeds,
their teeth would not seem to be susceptible to deep frac-
tures in the occlusal area. The question then arises as to
why their occlusal enamel is so thick. The answer may
lie in the barks eaten by gorillas, some of which have
elastic modulus values close to those of seed shells (see
Fig. 1). In a study of cercopithecine monkeys, Lambert
et al. (2004) found barks eaten by grey-cheeked manga-
beys (Lophocebus albigena) to be particularly hard and
even argued that bark and seeds were the two fallback
foods selecting for thick tooth enamel in these monkeys.
Also, a preliminary study noted that gorilla teeth feature
more wear on their occlusal surfaces than do the teeth of
either orangutans or chimpanzees (Welsch, 1967). There-
fore, the thick occlusal enamel of gorillas may be a pro-
tection against heavy surface wear. This is an issue that
remains to be studied further, and additional mechanical
property data on gorilla foods would go a long way to-
ward addressing this question.

ENAMEL MICROSTRUCTURE

Enamel is composed of rods or prisms that originate at
the EDJ and extend almost to the outer surface of the
tissue. The prisms can be straight, but more often than
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not exhibit at least a small degree of decussation, or
crossing. Decussation is caused by adjacent enamel
prisms orienting themselves in waves that are slightly
out of phase as they grow from the EDJ toward the
enamel surface. Cracks in enamel preferentially travel
between prisms rather than across them. Decussation
can slow crack growth by either causing the cracks to
deviate along reoriented prism directions or (in more
severe cases) to cut across prisms in order to maintain a
well-defined fracture surface (Koenigswald et al., 1987;
Bajaj et al., 2008).

Decussation most often occurs only in the inner part of
the enamel (Rensberger, 2000). It has been suggested
that this is due to the importance of abrasion resistance
conferred by parallel prisms at the occlusal surface
(Rensberger and Koenigswald, 1980). However, it could
also be that decussation is a mechanism that serves pri-
marily to slow down cracks that initiate at or near the
EDJ. Deep radial cracks can begin at the EDJ when a
large, hard object contacts the tooth with considerable
force (Lucas et al., 2008). Stalling these cracks early
could protect the tooth from catastrophic failure. Of the
great apes, orangutans should be in the most danger of
growing these deep cracks because of the high biting
loads needed to break down large hard seeds (Lucas
et al., 1994, 2008). This may explain why orangutans
have the most pronounced decussation of all great apes
(Macho et al.,, 2003). Chimpanzees and gorillas are
unlikely to experience such high tensile stresses at the
EDJ. Therefore, the enamel of gorillas (Shellis and
Poole, 1977; Boyde and Martin, 1984; Maas and Dumont,
1999) and chimpanzees (Macho et al., 2003) features rel-
atively little decussation.

The bulk of the evidence from enamel thickness, tooth
size, and enamel microstructure indicates that fallback
foods influence the enamel morphology of great apes.
However, there is no reason to believe that fallback foods
will always influence primate masticatory morphology.
Presumably, fallback foods are less preferred than other
foods for a reason, but that reason does not have to be
because of increased mechanical demand in processing
(i.e., because the food is harder or tougher). The fallback
food could be less preferred simply because it is less nu-
tritious, more difficult to find or acquire, or because it
has chemical or physical defenses (Lambert, 2007). The
food may also have a low intake rate either because it
requires preparation prior to ingestion, or because it is
small. Such is the case with grass corms (Altmann,
1998). Therefore, one could easily envision scenarios
where the primary influence on masticatory morphology
is a preferred food and not a fallback food. Such may be
the case with the pitheciines who have evolved mastica-
tory adaptations to puncture and process the hard peri-
carp of unripe fruits in order to get to the seeds as their
preferred food items (Kinzey and Norconk, 1990, 1993;
Martin et al., 2003). In this case, it seems that the me-
chanical cost of sclerocarpic harvesting is offset by the
significant nutritional quality of the seeds. Nevertheless,
it seems clear from this study and several others (Lam-
bert et al., 2004; Lambert, 2007) that fallback foods
should not be overlooked in terms of their ability to
influence evolution in primates and other animals.

RELEVANCE FOR EXTINCT HOMININS

This study has implications for inferring the diets of
early hominins. The megadont australopiths belonging
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to the genus Paranthropus, in particular the East Afri-
can species Paranthropus boisei, are known for having
very thick enamel (Grine and Martin, 1988). What may
be less well known is that P. boisei not only had thick oc-
clusal enamel, but thick lateral enamel as well (Beynon
and Wood, 1986). This suggests that P. boisei may have
had a varied diet of hard and tough foods—the thick oc-
clusal enamel protective of hard object feeding and the
thick, lateral enamel and large tooth size protective of
margin cracks from softer, tougher foods.

A recent 3D examination of the enamel thickness of
Paranthropus robustus from South Africa found that
this species also had thick occlusal enamel, but the lat-
eral enamel was not much thicker than that of other
hominins (Olejniczak et al., 2008a). This indicates a
hard, but not tough, diet and supports the finding from
studies of dental microwear that small hard objects were
contacting the teeth (Grine, 1981, 1987; Scott et al.,
2005). However, the large tooth size of P. robustus would
have still provided some protection against margin frac-
tures. We would also caution that the absence of a sur-
face microwear signal for larger hard objects in both P.
robustus and P. boisei (Ungar et al., 2008) may be mis-
leading. Evidence for feeding on such objects may be
indicated instead by the presence of deep cracks stalled
near the EDJ (Lucas et al., 2008). We have observed ini-
tiation of such deep cracks during in situ loading of
teeth from a variety of extant mammals by imaging with
a synchrotron x-ray beam. Similar high powered x-ray
imaging could be extended to look for deep cracks in the
teeth of Paranthropus.

Limited evidence from tooth sections shows that the
teeth of Paranthropus, and especially those of P. boisei,
can feature substantial prism decussation (Grine and
Martin, 1988; Teaford and Ungar, 2000), although appa-
rently not in all directions (Beynon and Wood, 1986). A
high degree of prism decussation would further support
the idea that both P. robustus and P. boisei were adapted
to eat hard foods. However, this does not preclude the
possibility that Paranthropus enamel served to combat
considerable tooth wear. The combination of extensive
prism decussation and a high degree of postcanine tooth
wear observed on many Paranthropus teeth (Robinson,
1954) suggests that both fracture and wear were major
threats to tooth integrity.

Finally, although not a point of focus in this article,
the degree of cusp curvature also plays a role in deter-
mining the forces required to deform and fracture
enamel. Higher forces are generally needed to damage
more bunodont teeth, suggesting that the low, rounded
cusps of Paranthropus postcanines offered protection
against fracture, regardless of the thickness of the
enamel or the microstructural pattern.
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