12,126 research outputs found

    Compact Crossed-Dipole Antennas Loaded with Near-Field Resonant Parasitic Elements

    Full text link
    © 2016 IEEE. Two compact planar crossed-dipole antennas loaded with near-field resonant parasitic (NFRP) elements are reported. The NFRP and crossed-dipole elements are designed for the desired circularly polarized (CP) radiation. By placing the NFRP element over the driven element at angles of 0° and 45°, respectively, dual-band and broadband CP antennas are realized. All radiating elements of antennas are 35 mm × 35 mm × 0.508 mm (0.187 λ0 × 0.187 λ0 × 0.0027 λ0 at 1.6 GHz) in size. The dual-band CP antenna has a measured S11 <-10-dB bandwidth of 226 MHz (1.473-1.699 GHz) and measured 3-dB axial ratio (AR) bandwidths of 12 MHz (1.530-1.542 GHz) and 35 MHz (1.580-1.615 GHz) with minimum AR CP frequencies of 1.535 GHz (AR = 0.26 dB) and 1.595 GHz (AR = 2.08 dB), respectively. The broadband CP antenna has a measured S11 <-10-dB bandwidth of 218 MHz (1.491-1.709 GHz) and a 3-dB AR bandwidth of 145 MHz (1.490-1.635 GHz). These compact antennas yield bidirectional electromagnetic fields with high radiation efficiency across their operational bandwidths

    Inflammatory Signalings Involved in Airway and Pulmonary Diseases

    Get PDF

    JCMT POL-2 and ALMA polarimetric observations of 6000-100 au scales in the protostar B335: linking magnetic field and gas kinematics in observations and MHD simulations

    Full text link
    We present our analysis of the magnetic field structures from 6000 au to 100 au scales in the Class 0 protostar B335 inferred from our JCMT POL-2 observations and the ALMA archival polarimetric data. To interpret the observational results, we perform a series of (non-)ideal MHD simulations of the collapse of a rotating non-turbulent dense core, whose initial conditions are adopted to be the same as observed in B335, and generate synthetic polarization maps. The comparison of our JCMT and simulation results suggests that the magnetic field on a 6000 au scale in B335 is pinched and well aligned with the bipolar outflow along the east-west direction. Among all our simulations, the ALMA polarimetric results are best explained with weak magnetic field models having an initial mass-to-flux ratio of 9.6. However, we find that with the weak magnetic field, the rotational velocity on a 100 au scale and the disk size in our simulations are larger than the observational estimates by a factor of several. An independent comparison of our simulations and the gas kinematics in B335 observed with the SMA and ALMA favors strong magnetic field models with an initial mass-to-flux ratio smaller than 4.8. We discuss two possibilities resulting in the different magnetic field strengths inferred from the polarimetric and molecular-line observations, (1) overestimated rotational-to-gravitational energy in B335 and (2) additional contributions in the polarized intensity due to scattering on a 100 au scale.Comment: Accepted by Ap

    Carcinoma ex pleomorphic adenoma of soft palate with cavernous sinus invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoma ex pleomorphic adenoma (CXPA) is an aggressive salivary gland malignancy and rare in minor salivary gland. A soft palate CXPA initially presenting as direct cavernous sinus (CS) invasion is very rare.</p> <p>Case Presentation</p> <p>A 60-year-old male had a 3-month history of a small soft palatal mass with progressing left cheek numbness, proptosis, and disturbed vision. Biopsy of soft palatal tumor showed pleomorphic adenoma. Magnetic resonance imaging showed a tumor involving left maxilla, and extended from pterygopalatine fossa, inferior orbital fissure to CS. Excision of tumor revealed CXPA. Adjuvant concomitant chemo-radiation therapy (CCRT) was given. The tumor recurred 5 months later in left CS which was re-treated with CCRT. The disease status was stable at 2 years after the diagnosis of CXPA.</p> <p>Conclusion</p> <p>We present this case to emphasize that patients with symptoms such as facial numbness, proptosis and disturbed vision should be carefully investigated for lesions invading CS by perineural spread.</p

    Spatiotemporal analysis of air pollution and asthma patient visits in Taipei, Taiwan

    Get PDF
    [[abstract]]Background: Buffer analyses have shown that air pollution is associated with an increased incidence of asthma, but little is known about how air pollutants affect health outside a defined buffer. The aim of this study was to better understand how air pollutants affect asthma patient visits in a metropolitan area. The study used an integrated spatial and temporal approach that included the Kriging method and the Generalized Additive Model (GAM). Results: We analyzed daily outpatient and emergency visit data from the Taiwan Bureau of National Health Insurance and air pollution data from the Taiwan Environmental Protection Administration during 2000-2002. In general, children (aged 0-15 years) had the highest number of total asthma visits. Seasonal changes of PM10, NO2, O3 and SO2 were evident. However, SO2 showed a positive correlation with the dew point (r = 0.17, p < 0.01) and temperature (r = 0.22, p < 0.01). Among the four pollutants studied, the elevation of NO2 concentration had the highest impact on asthma outpatient visits on the day that a 10% increase of concentration caused the asthma outpatient visit rate to increase by 0.30% (95% CI: 0.16%??.45%) in the four pollutant model. For emergency visits, the elevation of PM10 concentration, which occurred two days before the visits, had the most significant influence on this type of patient visit with an increase of 0.14% (95% CI: 0.01%??.28%) in the four pollutants model. The impact on the emergency visit rate was non-significant two days following exposure to the other three air pollutants. Conclusion: This preliminary study demonstrates the feasibility of an integrated spatial and temporal approach to assess the impact of air pollution on asthma patient visits. The results of this study provide a better understanding of the correlation of air pollution with asthma patient visits and demonstrate that NO2 and PM10 might have a positive impact on outpatient and emergency settings respectively. Future research is required to validate robust spatiotemporal patterns and trends

    Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Japanese encephalitis virus (JEV) infection is a major cause of acute encephalopathy in children, which destroys central nervous system (CNS) cells, including astrocytes and neurons. Matrix metalloproteinase (MMP)-9 has been shown to degrade components of the basal lamina, leading to disruption of the blood-brain barrier (BBB) and to contribute to neuroinflammatory responses in many neurological diseases. However, the detailed mechanisms of JEV-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) are largely unclear.</p> <p>Methods</p> <p>In this study, the effect of JEV on expression of MMP-9 was determined by gelatin zymography, western blot analysis, RT-PCR, and promoter assay. The involvement of AP-1 (c-Jun and c-Fos), c-Src, PDGFR, PI3K/Akt, and MAPKs in these responses were investigated by using the selective pharmacological inhibitors and transfection with siRNAs.</p> <p>Results</p> <p>Here, we demonstrate that JEV induces expression of pro-form MMP-9 via ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent, AP-1 activation in RBA-1 cells. JEV-induced MMP-9 expression and promoter activity were inhibited by pretreatment with inhibitors of AP-1 (tanshinone), c-Src (PP1), PDGFR (AG1296), and PI3K (LY294002), and by transfection with siRNAs of c-Jun, c-Fos, PDGFR, and Akt. Moreover, JEV-stimulated AP-1 activation was inhibited by pretreatment with the inhibitors of c-Src, PDGFR, PI3K, and MAPKs.</p> <p>Conclusion</p> <p>From these results, we conclude that JEV activates the ROS/c-Src/PDGFR/PI3K/Akt/MAPKs pathway, which in turn triggers AP-1 activation and ultimately induces MMP-9 expression in RBA-1 cells. These findings concerning JEV-induced MMP-9 expression in RBA-1 cells imply that JEV might play an important role in CNS inflammation and diseases.</p

    Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider

    Get PDF
    Background Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41.000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200.000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila) or simply from researchers' backyards. Are we limited to ‘blindly fishing’ in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? Methodology We examined the biomechanical properties of silk produced by the remarkable Malagasy ‘Darwin's bark spider’ (Caerostris darwini), which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m2) suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m3, with some samples reaching 520 MJ/m3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. Conclusions Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web into the river. This hypothesis predicts that rapid change in material properties of silk co-occurred with ecological shifts within the genus, and can thus be tested by combining material science, behavioral observations, and phylogenetics. Our findings highlight the potential benefits of natural history–informed bioprospecting to discover silks, as well as other materials, with novel and exceptional properties to serve as models in biomimicry.Primary funding for this work came from the Slovenian Research Agency (grant Z1-9799-0618-07 to I. Agnarsson), the National Geographic Society (grant 8655-09 to the authors), and the National Science Foundation (grants DBI-0521261, DEB-0516038 and IOS-0745379 to T. Blackledge). Additional funding came from the European Community 6th Framework Programme (a Marie Curie International Reintegration Grant MIRG-CT-2005 036536 to M. Kuntner). The 2001 field work was supported by the Sallee Charitable Trust grant to I. Agnarsson and M. Kuntner and by a United States National Science Foundation grant (DEB-9712353) to G. Hormiga and J. A. Coddington. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies
    corecore