3,645 research outputs found

    Droplet migration: quantitative comparisons with experiment

    Get PDF
    An important practical feature of simulating droplet migration computationally, using the lubrication approach coupled to a disjoining pressure term, is the need to specify the thickness, H, of a thin energetically stable wetting layer, or precursor lm, over the entire substrate. The necessity that H be small in order to improve the accuracy of predicted droplet migration speeds, allied to the need for mesh resolution of the same order as H near wetting lines, increases the computational demands signicantly. To date no systematic investigation of these requirements on the quantitative agreement between prediction and experimental observation has been reported. Accordingly, this paper combines highly ecient Multigrid methods for solving the associated lubrication equations with a parallel computing framework, to explore the eect of H and mesh resolution. The solutions generated are compared with recent experimentally determined migration speeds for droplet ows down an inclined plane

    Higher Derivative Operators from Transmission of Supersymmetry Breaking on S_1/Z_2

    Full text link
    We discuss the role that higher derivative operators play in field theory orbifold compactifications on S_1/Z_2 with local and non-local (Scherk-Schwarz) breaking of supersymmetry. Integrating out the bulk fields generates brane-localised higher derivative counterterms to the mass of the brane (or zero-mode of the bulk) scalar field, identified with the Higgs field in many realistic models. Both Yukawa and gauge interactions are considered and the one-loop results found can be used to study the ``running'' of the scalar field mass with respect to the momentum scale in 5D orbifolds. In particular this allows the study of the behaviour of the mass under UV scaling of the momentum. The relation between supersymmetry breaking and the presence of higher derivative counterterms to the mass of the scalar field is investigated. This shows that, regardless of the breaking mechanism, (initial) supersymmetry cannot, in general, prevent the emergence of such operators. Some implications for phenomenology of the higher derivative operators are also presented.Comment: 29 pages, LaTeX. Added Section 4 ("Phenomenological implications: living with ghosts?") and Appendix

    The One Loop Effective Action of QED for a General Class of Electric Fields

    Get PDF
    We compute the effective action of QED at one loop order for an electric field which points in the z^\hat{z} direction and depends arbitrarily upon the light cone time coordinate, x+=(x0+x3)/2x^+ = (x^0 + x^3)/\sqrt{2}. This calculation generalizes Schwinger's formula for the vacuum persistence probability in the presence of a constant electric field.Comment: 9 pages, LaTeX 2 epsilo

    Higher Derivative Operators from Scherk-Schwarz Supersymmetry Breaking on T^2/Z_2

    Full text link
    In orbifold compactifications on T^2/Z_2 with Scherk-Schwarz supersymmetry breaking, it is shown that (brane-localised) superpotential interactions and (bulk) gauge interactions generate at one-loop higher derivative counterterms to the mass of the brane (or zero-mode of the bulk) scalar field. These brane-localised operators are generated by integrating out the bulk modes of the initial theory which, although supersymmetric, is nevertheless non-renormalisable. It is argued that such operators, of non-perturbative origin and not protected by non-renormalisation theorems, are generic in orbifold compactifications and play a crucial role in the UV behaviour of the two-point Green function of the scalar field self-energy. Their presence in the action with unknown coefficients prevents one from making predictions about physics at (momentum) scales close to/above the compactification scale(s). Our results extend to the case of two dimensional orbifolds, previous findings for S^1/Z_2 and S^1/(Z_2 x Z_2') compactifications where brane-localised higher derivative operators are also dynamically generated at loop level, regardless of the details of the supersymmetry breaking mechanism. We stress the importance of these operators for the hierarchy and the cosmological constant problems in compactified theories.Comment: 23 pages, LaTeX, one figure, published version in JHE

    Supersymmetric codimension-two branes in six-dimensional gauged supergravity

    Full text link
    We consider the six-dimensional Salam-Sezgin supergravity in the presence of codimension-2 branes. In the case that the branes carry only tension, we provide a way to supersymmetrise them by adding appropriate localised Fayet-Iliopoulos terms and localised corrections to the Chern-Simons term and modifying accordingly the fermionic supersymmetry transformations. The resulting brane action has N=1 supersymmetry (SUSY). We find the axisymmetric vacua of the system and show that one has unwarped background solutions with "football"-shaped extra dimensions which always respect N=1 SUSY for any value of the equal brane tensions, in contrast with the non-supersymmetric brane action background. Finally, we generically find multiple zero modes of the gravitino in this background and discuss how one could obtain a single chiral zero mode present in the low energy spectrum.Comment: 21 pages, no figures, A sign error in the gauge potential at the lower brane corrected and its consequent effect discusse

    General Analysis of Inflation in the Jordan frame Supergravity

    Full text link
    We study various inflation models in the Jordan frame supergravity with a logarithmic Kahler potential. We find that, in a class of inflation models containing an additional singlet in the superpotential, three types of inflation can be realized: the Higgs-type inflation, power-law inflation, and chaotic inflation with/without a running kinetic term. The former two are possible if the holomorphic function dominates over the non-holomorphic one in the frame function, while the chaotic inflation occurs when both are comparable. Interestingly, the fractional-power potential can be realized by the running kinetic term. We also discuss the implication for the Higgs inflation in supergravity.Comment: 16 pages, 1 figur

    Motion and gravitational radiation of a binary system consisting of an oscillating and rotating coplanar dusty disk and a point-like object

    Full text link
    A binary system composed of an oscillating and rotating coplanar dusty disk and a point mass is considered. The conservative dynamics is treated on the Newtonian level. The effects of gravitational radiation reaction and wave emission are studied to leading quadrupole order. The related waveforms are given. The dynamical evolution of the system is determined semi-analytically exploiting the Hamiltonian equations of motion which comprise the effects both of the Newtonian tidal interaction and the radiation reaction on the motion of the binary system in elliptic orbits. Tidal resonance effects between orbital and oscillatory motions are considered in the presence of radiation damping.Comment: 26 pages, 8 figure

    Electrified thin film flow at finite Reynolds number on planar substrates featuring topography

    Get PDF
    The flow of a gravity-driven thin liquid film over a substrate containing topography, in the presence of a normal electric field, is investigated. The liquid is assumed to be a perfect conductor and the air above it a perfect dielectric. Of particular interest is the interplay between inertia, for finite values of the Reynolds number, Re, and electric field strength, expressed in terms of the Weber number, We, on the resultant free-surface disturbance away from planarity. The hydrodynamics of the film are modelled via a depth-averaged form of the Navier–Stokes equations which is coupled to a Fourier series separable solution of Laplace’s equation for the electric potential: detailed steady-state solutions of the coupled equation set are obtained numerically. The case of two-dimensional flow over different forms of discrete and periodically varying spanwise topography is explored. In the case of the familiar free-surface capillary peaks and depressions that arise for steep topography, and become more pronounced with increasing Re, greater electric field strength affects them differently. In particular, it is found that for topography heights commensurate with the long-wave approximation: (i) the capillary ridge associated with a step-down topography at first increases before decreasing, both monotonically, with increasing We and (ii) the free-surface hump which arises at a step-up topography continues to increase monotonically with increasing We, the increase achieved being smaller the larger the value of Re. A series of results for the more practically relevant problem of three-dimensional film flow over substrate containing a localised square trench topography is provided. These exhibit behaviour and features consistent with those observed for two-dimensional flow, in that as We is increased the primary free-surface capillary ridges and depressions are at first enhanced, with a corresponding narrowing, before becoming suppressed. In addition, it is found that, while the well-known horse-shoe shaped disturbance characteristic of such flows continues to persist with increasing Re in the absence of an electric field, when the latter is present and We increased in value the associated comet tail disappears as does the related downstream surge. The phenomenon is explained with reference to the competition between the corresponding capillary pressure and Maxwell stress distributions
    corecore