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Abstract

The flow of a gravity-driven thin liquid film over a substrate containing topography,
in the presence of a normal electric field, is investigated. The liquid is assumed to be
a perfect conductor and the air above it a perfect dielectric. Of particular interest is
the interplay between inertia, for finite values of the Reynolds number, Re, and electric
field strength, expressed in terms of the Weber number, We, on the resultant free-surface
disturbance away from planarity. The hydrodynamics of the film are modelled via a
depth-averaged form of the Navier-Stokes equations which is coupled to a Fourier series
separable solution of Laplace’s equation for the electric potential: detailed steady-state
solutions of the coupled equation set are obtained numerically.

The case of two-dimensional flow over different forms of discrete and periodically
varying spanwise topography is explored. In the case of the familiar free-surface capillary
peaks and depressions that arise for steep topography, and become more pronounced with
increasing Re, greater electric field strength affects them differently. In particular, it
is found that for topography heights commensurate with the long-wave approximation:
(i) the capillary ridge associated with a step-down topography at first increases before
decreasing, both monotonically, with increasing We; (ii) the free-surface hump which
arises at a step-up topography continues to increase monotonically with increasing We,
the increase achieved being smaller the larger the value of Re.

A series of results for the more practically relevant problem of three-dimensional film
flow over substrate containing a localised square trench topography is provided. These
exhibit behaviour and features consistent with those observed for two-dimensional flow,
in that as We is increased the primary free-surface capillary ridges and depressions are at
first enhanced, with a corresponding narrowing, before becoming suppressed. In addition,
it is found that, while the well-known horse-shoe shaped disturbance characteristic of such
flows continues to persist with increasing Re in the absence of an electric field, when the
latter is present and We increased in value the associated comet tail disappears as does the
related downstream surge. The phenomenon is explained with reference to the competition
between the corresponding capillary pressure and Maxwell stress distributions.

Keywords: Thin liquid films; Free surface flow; Inertia; Electrohydrodynamics; Numerical
solutions; Topography
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1 Introduction

The many roles and relevance of thin liquid films, whether they occur naturally or feature/arise
as part of a particular engineering, technological or scientific application, is exemplified in the
recent comprehensive review of Craster and Matar (2009). The principal challenge in relation
to modelling such problems is the need to account for the presence of a bounding free surface,
the location of which is not known a priori. It is no surprise, therefore, that much of the
progress historically has centered on the solution of the idealised two-dimensional problem:
it is in recent years only that significant inroads have been made into solving a certain class
of three-dimensional flows. Of particular interest over the past two decades or so, has been
a variety of problems associated with thin film flow on substrates containing topography -
either randomly occurring and discrete (Peurrung and Graves 1993; Decré and Baret 2003;
Gaskell, Jimack, Sellier, Thompson and Wilson 2004; Veremieiev, Thompson, Lee and Gaskell
2010), or periodically repeating (Vlachogiannis and Bontozoglou 2002; Wierschem, Scholle and
Aksel 2003, Wierschem and Aksel 2004). From an industrial standpoint these types of flow
are important in: the manufacture of micro-scale sensors and devices, Tabeling (2005); the
coating of paper, plastics and metals, Kistler and Schweizer (1997); heat exchanger design,
Helbig, Nasarek, Gambaryan-Roisman and Stephan (2009); the performance of vaporisation
turbine combustion chambers, Helbig, Alexeev, Gambaryan-Roisman and Stephan (2005); the
production of electronic components such as displays and printed circuits, Decré and Baret
(2003).

Arguably the practical overarching goal apropos the above, is to minimise the free-surface
disturbance that arises, in order to yield optimum performance in terms of, for example, heat
and mass transfer (Yoshimura, Nosoko and Nagata 1996; Serifi, Malamataris and Bontozoglou
2004), and evaporation (Gaskell, Jimack, Sellier and Thompson, 2006), or to maximise free-
surface planarity in manufacturing applications to ensure predictable functional or optical prop-
erties (Stillwagon and Larson 1988, 1990). To this end, thermally-induced Marangoni stresses,
Gramlich, Kalliadasis, Homsy and Messer (2002), viscoelastic fluid behaviour, Saprykin, Koop-
mans and Kalliadasis (2007), and selective topography design, Sellier (2008) and Heining and
Aksel (2009), have each been suggested recently as a means of controlling the degree of free-
surface disturbance generated. The use of electric fields, on the other hand, for manipulating
the behaviour of thin liquid films stretches back several decades, having been investigated by
various authors with particular applications in mind. In industrial coating processes, for exam-
ple, electric fields are combined with charge distributions at the substrate to create electrostatic
assist, thus widening the coating window by controlling the position of the associated dynamic
wetting line in order to avoid/postpone the onset of air entrainment, Nakajima and Miyamoto
(1993). In addition, electric fields have been used to increase the micro-mixing of fluids (Oddy,
Santiago and Mikkelsen, 2001), in the context of electrostatic liquid film radiators (Bankoff,
Miksis, Gwinner and Kim, 1994; Bankoff, Griffing and Schluter, 2002) and to create patterns
on films (Schäffer, Thurn-Albrecht, Russel and Steiner, 2000; Craster and Matar, 2005; Wu,
Pease and Russell, 2005). They have similarly been utilised for the manipulation of droplets
(Yeo, Craster and Matar, 2007), and to align droplets in a particular direction (Mahlmann and
Papageorgiou, 2009).

Of late Tseluiko, Blyth, Papageogiou and Vanden-Broeck (2008a, 2008b) have considered the
effects of substrate topography on steady, two-dimensional electrified film flow at zero Reynolds
number. They addressed gravity-driven Stokes flow over a sinusoidally corrugated surface, with
comparisons drawn between predictions from lubrication theory for small amplitude corruga-
tions against boundary element solutions valid for corrugations and trench topography of arbi-
trary size. The latter solutions were used to confirm the range of applicability of the lubrication

2



analysis and to investigate the conditions under which eddies are generated adjacent to wavy
topography. For the case of flow past trench topography it was shown that an electric field can
either reduce or promote irregularities at the film surface, depending on the local geometry and
the electrical properties of the film: for one which is a perfect conductor/(dielectric) the height
of the capillary ridge upstream of the trench was found to decrease/(increase) monotonically
as the electric field strength increased. A related long-wave analysis was carried out for flow
over an inclined surface containing periodic steps, trenches and mound indentations with the
liquid film assumed to be a perfect conductor and the air above it a perfect dielectric. This
work revealed that an electric field, applied normal to the film, is able to eliminate the capillary
ridge at a step-down topography at the expense of creating a free-surface hump at an adjacent
step-up one. These analyses were subsequently extended to consider, in a limited sense, the
additional influence of inertia in determining the free-surface shape for the case of a perfect
dielectric film flowing over a wavy wall, Tseluiko and Blyth (2009).

The above theoretical electrohydrodynamic analyses are directed at two-dimensional, span-
wise flows only; the investigation of three-dimensional ones having yet to appear. The principal
reason for this is that the computational resources required to obtain, ideally, a full and accurate
numerical solution of the three-dimensional Navier-Stokes equations governing the free-surface
flow problem, even without the added complexity of having to solve accompanying coupled
electric field equations, remains a major hurdle and is why simpler hydrodynamic models have
been employed in the main. Solving the Navier-Stokes or Stokes equations, subject to the atten-
dant boundary conditions, using a finite or boundary element method would, however, overcome
many of the restrictions associated with models based on the long-wave approximation - namely
removing the constraint on choice of Capillary number, film thickness or topography aspect ra-
tio. The boundary element method has been used widely to study two-dimensional Stokes
flows over topography (Pozrikidis, 1988; Mazouchi and Homsy, 2001). It has found limited
application in the case of three-dimensional flows, (Pozrikidis and Thoroddsen, 1991; Luo and
Pozrikidis, 2006, 2007; Blyth and Pozrikidis, 2006); see also the work of Baxter, Power, Cliffe
and Hibberd (2009, 2010) concerning the gravity-driven flow of thin films around obstacles.
Finite element solutions of the full Navier-Stokes equations, on the other hand, for non-zero
Reynolds number have been restricted to the case of steady-state two-dimensional flow. Bon-
tozoglou and Serifi (2008), for example, explored the free-surface disturbance generated by
film flow down a vertical plane containing an isolated step topography, showing that for large
Capillary numbers increasing inertia first amplifies and then diminishes the capillary features.
The reader’s attention is directed also to the investigations of Trifonov (1999), Malamataris
and Bontozogolou (1999) and Gu, Liu, Yan and Yu (2004); the latter finding good agreement
with the experimental work of Zhao and Cerro (1992). Recently, Scholle, Haas, Aksel, Wil-
son, Thompson and Gaskell (2008a) considered the subtleties associated with the competing
effects of geometry and inertia on the underpinning local flow structure in thick-gravity driven
films on sinusoidally varying substrate. In addition, good agreement was found, in the limit
of Stokes-like flow, with corresponding experimental data and flow visualisations reported by
Wierschem et al (2003); see also their related work on eddy genesis and manipulation (Scholle,
Haas, Aksel, Wilson, Thompson and Gaskell, 2009) together with the effect of the same on
global heat transfer (Scholle, Haas, Aksel, Thompson, Hewson and Gaskell, 2008b) in plane
laminar shear flow, the study of Wierschem, Pollack, Heining and Aksel (2010) concerned with
eddy suppression in film flow over topography and the investigation of Nguyen and Bontozoglou
(2011) directed at inertial film flow along strongly undulated substrates.

Returning to the adoption of a long-wave approximation, the three-dimensional predictions
obtained by Gaskell et al (2004) using an accurate numerical solution strategy, were the first
of their kind to appear and found to agree extremely well with the benchmark experimental
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data of Decré and Baret (2003). Indeed, not only was lubrication theory shown to produce
accurate results in regions of parameter space where it is not strictly valid, the authors were
able to quantify the expected error in terms of Reynolds number and topography height/depth
by a detailed comparison with complementary finite element solutions of the full Navier-Stokes
equations for the case of spanwise topography. Veremieiev et al (2010) recently considered the
same problem; this time undertaking a detailed investigation of the effect of inertia using a
model based on depth-averaging the governing unsteady Navier-Stokes equations, a method
akin to the integral boundary layer approximation developed by Shkadov (1967, 1968) for flow
over flat substrates and subsequently utilised for the case when surface topography is present
by Trifonov (2004) and Saprykin et al (2007). Not only were they able to isolate and identify
the role of inertia, the results obtained lend further support to the suitability of the long-wave
approximation for resolving gravity-driven flows when the topography depth/height to film
thickness ratio is sufficiently small and the Reynolds number is not too large.

No review would be complete without reference to the related issue of the hydrodynamic sta-
bility of film flows. Benjamin (1957) and Yih (1963) have shown, in the case of two-dimensional,
gravity-driven flow down a flat inclined substrate, there exists a critical Reynolds number be-
yond which the flow becomes unstable to long waves, see also Chang (1994): a result that has
been verified experimentally by Liu, Paul and Gollub (1993) and Liu and Gollub (1994). Com-
plementary numerical investigations of waves at the surface of a flowing film have been reported
by Ramaswamy, Chippada and Joo (1996) and Malamataris, Vlachogiannis and Bontozoglou
(2002). With particular reference to the influence of electric fields on flow stability, it has long
been known that instabilities can be induced by applying a sufficiently strong electric field
across a film (Melcher and Taylor,1969; González and Castellanos, 1996). For gravity-driven,
two-dimensional film flow down flat inclined substrates, Kim, Bankoff and Miksis (1992) showed
that the presence of an electric field normal to it lowers the critical Reynolds number at which
free-surface instability occurs. Several subsequent studies have carried out stability analyses
of this problem using the long-wave approximation where the additional Maxwell stress term
in the free-surface stress boundary condition is obtained by the solution of the associated two-
dimensional Laplace equation for the electric potential. The work of Tseluiko and Papageorgiou
(2006a, 2006b), for example, showed that applying an electric field normal to a film can excite a
long-wave instability even at zero Reynolds number. Such findings have been confirmed exper-
imentally by Griffing, Bankoff, Miksis and Schluter (2006), whose complementary lubrication
predictions of the dynamical effect of a strong normal electric field agree reasonably well with
their data.

In contrast, comparatively few studies have appeared that consider the combined influences
of inertia and topography on the stability of thin films and none have emerged that consider
also the presence of an electric field. Recent experiments, however, in which the flow is taken
to be essentially two-dimensional in a streamwise cross-sectional plane, have demonstrated that
there is a strong coupling between inertia and topography for the case of gravity-driven flow
over surfaces containing spanwise periodic rectangular (Vlachogiannis and Bontozoglou, 2002;
Argyriadi, Vlachogiannis and Bontozoglou, 2006) or wavy (Wierschem, Lepski and Aksel, 2005)
features. The experimentally-observed rise in critical Reynolds number with increasing topog-
raphy steepness that occurs has also been predicted theoretically by several authors, see for
example Wierschem and Aksel (2003), Trifonov (2007) and Dávalos-Orozco (2007, 2008); con-
versely, it has been reported recently that undulating surfaces may have a destabilising influence
on the flow if the surface tension is sufficiently high (Heining and Aksel, 2009; D’Alessio, Pascal
and Jasmine, 2009; Häcker and Uecker 2009).

The present work has two main strands in relation to gravity-driven film flow at finite
Reynolds number in the presence of an electric field normal to it: two-dimensional flow over dis-
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crete steep and smooth periodically varying spanwise topography revisited; three-dimensional
flow over localised steep topography, the exploration of which is considered for the first time.
In both cases, the hydrodynamics is modelled using the approach of Veremieiev et al (2010)
and the governing equation set solved numerically. Solution of the coupled three-dimensional
Laplace equation for the electric potential is obtained in the form of a Fourier series in separable
variables. In all cases the results obtained are compared and contrasted in detail with those
of previous studies, where they exist. In the case of two-dimensional flow in the absence of
an electric field, corresponding finite element solutions of the Navier-Stokes equations reveal
both the underlying flow structure and the limitations associated with approximate models for
inertia utilised within a standard lubrication framework.

2 Problem formulation

The problem of interest, see Figure 1, is that of steady, gravity-driven thin film flow down a
planar substrate containing topography, shown for illustrative purposes as a discrete trench, of
depth S0, streamwise length LT and spanwise width WT ; a uniform electric field, of strength,
E0, is applied normal to the substrate which is inclined at an angle θ 6= 0 to the horizontal,
with the liquid taken to be incompressible, having constant density, ρ, viscosity, µ, and surface
tension, σ. The Cartesian streamwise, X, spanwise, Y , and normal, Z, coordinates are as
indicated and the solution domain bounded from below by the substrate, Z = S(X, Y ), from
above by the free surface, Z = F (X, Y ), by an upstream inflow condition at X = 0, together
with far-field conditions at the outflow, X = Lp, and to the left and right at Y = 0 and Y = Wp,
respectively. The film thickness at any point in the (X, Y ) plane is given by H = F − S.

The liquid is assumed to be perfectly conducting, so that there is no electric field inside
it and no potential difference between the substrate and the free surface; the air above it
has comparatively negligible viscosity, is taken to be stationary and assumed to be an ideal
dielectric with constant electrical permittivity, εe. This prescription is valid for fluids with high
electrical conductivity, such as liquid metals or liquid electrolytes with high levels of impurity.
The electric field, E, is related to the electric potential, Φ, via E = −∇Φ. The resulting
laminar flow is governed by the steady Navier-Stokes and continuity equations, namely:

ρ (U · ∇U) = −∇P +∇ · T + ρG, (1)

∇ ·U = 0, (2)

while the electric potential in the air above the film satisfies Laplace’s equation:

∇2Φ = 0. (3)

In equations (1) and (2), U = (U, V,W ) and P are the fluid velocity and pressure, respectively;

T = µ
(
∇U + (∇U )T

)
is the viscous stress tensor; G = G0 (sin θ, 0,− cos θ) is the acceleration

due to gravity with G0 the standard gravity constant. Without loss of generality, Φ is given
the value zero at both the substrate, Z = S(X, Y ), and the free surface, Z = F (X, Y ).

The fluid flow and electric field equations are coupled via the free-surface stress boundary
condition:

(−PI + T ) |Z=F · n = (σKI + PAI +M |Z=F ) · n, (4)

where M = εe
(
E ⊗E − 1

2
E2I

)
is the Maxwell stress tensor acting on the surface of a conduc-

tor; ⊗ denotes the dyadic product of two vectors; I is the unity tensor; n =
(
− ∂F

∂X
,−∂F

∂Y
, 1
)
·[(

∂F
∂X

)2
+
(
∂F
∂Y

)2
+ 1

]−1/2

is the unit normal vector pointing outward from the free surface;
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K = −∇·n is twice the mean curvature of the free surface that, following for example Saprykin
et al (2007), is taken to be positive when the surface is concave upwards; PA is the pressure of
the surrounding air. In what follows the pressure variable is shifted, P → P + PA, to denote
instead a reference pressure.

Taking the asymptotic, or fully-developed, film thickness, H0, as a universal reference length-
scale, the free-surface (maximum) velocity, U0 = ρG0H

2
0 sin θ/2µ, apropos the classic Nusselt

solution (Spurk and Aksel, 2008) as an appropriate velocity-scale and scaling the pressure
(stress tensor) via P0 = µU0/H0, equations (1) and (2) in non-dimensional form are:

Re (u · ∇u) = −∇p+∇ · τ + Stg, (5)

∇ · u = 0, (6)

where u = (u, v, w), τ and g = G/G0 are dimensionless velocity, viscous stress tensor and grav-
ity component, respectively; Re = ρU0H0/µ is the Reynolds number and St = ρG0H

2
0/µU0 =

2/ sin θ the Stokes number. Alternatively, the latter can be written in terms of the Froude num-
ber, Fr = U0/

√
H0G0, as St = Re/Fr2. The electric field is scaled by its magnitude E0 and

the electrical potential by E0H0; equation (3) rewritten in terms of the dimensionless electrical
potential, ϕ, is then:

∇2ϕ = 0. (7)

Noting that an electric field is orientated normal to the surface of a conductor, Landau and
Lifshitz (1984), namely:

e|z=f · t = 0, (8)

the stress boundary condition (4) in non-dimensional form can be separated into normal and
tangential components by taking its scalar product with respect to both the unit normal and
tangent vectors at the free surface, that is:

−p|z=f + (τ |z=f · n) · n =
κ

Ca
+We (∇ϕ)2 |z=f , (9)

(τ |z=f · n) · t = 0. (10)

where e is the dimensionless electric field; Ca = µU0/σ is the Capillary number, the ratio of
viscous to surface tension forces; We = εeH0E

2
0/2µU0, the Weber number, provides a measure

of the relative importance of electrical to viscous forces. The unit vector tangential to the

free surface is t =
(
αt, βt, αt

∂f
∂x

+ βt
∂f
∂y

)[
α2
t + β2

t +
(
αt

∂f
∂x

+ βt
∂f
∂y

)2
]−1/2

, where αt and βt are

constants that define its direction at a point in the tangent plane; thus formula (10) actually
implies two boundary conditions. Conditions (9) and (10) result in an important fact: the
Maxwell stresses do not contribute to the tangential stress balance.

No-slip is imposed at the substrate:

u|z=s = 0, (11)

together with the following kinematic constraint at the free surface:

u|z=f · n = 0. (12)

Since equation (6) is satisfied for a film of arbitrary thickness over a flat substrate, in
order to guarantee unique solutions it is necessary to specify an additional constraint for the
film thickness, see Scholle et al (2008a). In the case of flow over a discrete trench or peak

6



topography located on a flat inclined substrate, the film thickness at the inflow boundary is
imposed via:

h|x=0 = 1. (13)

For the case of flow over periodically repeating, wavy substrates extending to the boundary,
a boundary condition ensuring that the fixed volume of fluid involved is preserved is more
appropriate; setting this as equivalent to the same volume of fluid flowing over a uniformly flat
substrate, the same is enforced by requiring that:

∫ lp

0

∫ wp

0

hdxdy = lpwp. (14)

In addition, the following condition on electric potential holds at the free surface:

ϕ|z=f = 0, (15)

and the imposition of a uniform electric field at infinity requires that:

∇ϕ|z→∞ = (0, 0,−1) . (16)

The electrohydrodynamic problem is closed by imposing periodic boundary conditions in both
x and y directions at the far-field extremities of the domain of interest:

(u, p, h, s, ϕ) |x=lp = (u, p, h, s, ϕ) |x=0, (u, p, h, s, ϕ) |y=wp
= (u, p, h, s, ϕ) |y=0. (17)

In expressions (8)-(17), x, y, z, h, s, f, p and κ are the dimensionless values of their upper-case
counterparts, as are s0, lt, wt, lp and wp.

The complexity of the general flow problem as specified above can be reduced to one which
is more tractable, while retaining the nonlinear inertial terms, by depth-averaging equations (5)
and (6). Since the approach is described in detail elsewhere, Veremieiev et al (2010), an outline
only is provided. In brief, the governing hydrodynamic equations and associated boundary
conditions are simplified in terms of the long-wave approximation, Oron, Davis and Bankoff
(1997), on the basis that the ratio ε = H0/L0 ≪ 1, where L0 = (σH0/3ρG0 sin θ)

1/3 is the
characteristic in-plane capillary length scale, Gaskell et al (2004). The key steps involve:

(i) Re-scaling equations (5) - (6) and boundary conditions (9) - (14) in terms of L0, which is
equivalent to the following change of non-dimensional variables: (x, y, lt, wt, lp, wp, p) →
(x, y, lt, wt, lp, wp, p) /ε, w → εw with all terms of O(ε2) or higher neglected; the scalings
used for the other variables remain unchanged.

(ii) Averaging the re-scaled equations over the depth of the thin film, h = H/H0, and formu-

lating them in terms of the averaged velocities ū (x, y) = 1

h

∫ f

s
udz, v̄ (x, y) = 1

h

∫ f

s
vdz,

the pressure p (x, y, z) and the film thickness h (x, y).

(iii) Specifying the unknown friction and dispersion terms appearing in the averaged equation
set using the assumption that the velocity profiles across the film have the same and
consistent self-similar form as the classical Nusselt solution:

u = 3ū

(
ξ − ξ2

2

)
, v = 3v̄

(
ξ − ξ2

2

)
, where ξ =

z − s

h
. (18)
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Proceeding in this way yields the following depth-averaged form (DAF) equation set:

6

5
εRe

(
ū
∂ū

∂x
+ v̄

∂ū

∂y

)
= −∂p

∂x
− 3ū

h2
+ 2, (19)

6

5
εRe

(
ū
∂v̄

∂x
+ v̄

∂v̄

∂y

)
= −∂p

∂y
− 3v̄

h2
, (20)

p = − ε3

Ca
∇2 (h+ s) + 2ε (h+ s− z) cot θ − εWe

(
∂ϕ

∂z

)2

|z=f , (21)

∂(hū)

∂x
+

∂(hv̄)

∂y
= 0, (22)

which is solved subject to either constraint (13) or (14) and the following far-field periodic
boundary conditions:

(ū, v̄, p, h) |x=lp = (ū, v̄, p, h) |x=0, (ū, v̄, p, h) |y=wp
= (ū, v̄, p, h) |y=0. (23)

The Maxwell stress, appearing as the last term on the right hand side of equation (21), is
obtained via the solution of equation (7) for the electric potential; although equations (19)-(22)
are valid for non-zero Re, their range of applicability is bounded by virtue of the long-wave
limitation, namely to the case of small Capillary numbers only, that is Ca = µU0/σ = ε3/6 ≪ 1.
Note that, in contrast to the DAF used in Veremieiev et al (2010), equation (21) for the pressure
is retained, rather than eliminating it as an unknown by substitution into equations (19) and
(20); doing so minimises the computational time and effort associated with evaluating the
Maxwell stress term.

Attention is restricted to film flows over simple step, trench and wavy bottom topographies.
Since the topography profile appears as a function in the governing equations, completely sharp
topographical features have to be approximated; accordingly, these are defined by arctangent
functions (Stillwagon and Larson, 1988). For example, a rectangular trench is specified as
follows:

s (x∗, y∗) =
s0

4 tan−1
(
lt
2δ

)
tan−1

(
wt

2δ

)
[
tan−1

(
x∗ + lt/2

δ

)
− tan−1

(
x∗ − lt/2

δ

)]

×
[
tan−1

(
y∗ + wt/2

δ

)
− tan−1

(
y∗ − wt/2

δ

)]
, (24)

where s0(= S0/H0) is the non-dimensional depth (s0 < 0), with lt(= Lt/L0), wt(= (Wt/L0)
and δ defined as the non-dimensional streamwise length, spanwise width and steepness factor,
respectively. The coordinate system (x∗, y∗) = (x− xt, y − yt) has its origin at the centre of
the topography (xt, yt). Note that for δ ≪ 1 the arctangent is a rapidly convergent function
and thus topography defined according to equation (24) can be assumed to satisfy the periodic
boundary conditions (17) to an acceptable degree of precision. Smoothly varying topography,
such as a sinusoidal undulation, is easily specified via the appropriate functional form.

3 Method of solution

3.1 Hydrodynamic equations

Equations (19) to (22) are solved numerically, subject to the boundary conditions specified,
on a rectangular computational domain, (x, y) ∈ [0, lp] × [0, wp], subdivided using a staggered
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arrangement of unknowns. Taking (i, j) ∈ [1, nx] × [1, ny] to represent a typical mesh point
in the system, where nx and ny are the total number of nodes, in the x and y directions,
respectively, values of film thickness, h, and pressure, p, are located at (i, j), with averaged
velocities ū and v̄ located at the mid-points (i+ 1/2, j) and (i, j + 1/2), respectively; uniform
spatial increments were employed, ∆x = lp/nx and ∆y = wp/ny, such that x1 = 0, y1 = 0
and xnx

= lp −∆x, yny
= wp −∆y. The use of such a staggered mesh arrangement avoids the

well-known checkerboard instability that results if central differencing is applied to first-order
pressure derivatives and to the terms in the continuity equation if the pressure and velocity
components are collocated, Trottenberg, Oosterlee and Schüller (2001).

Writing discrete forms of the momentum equations (19) and (20) at (i+ 1/2, j) and (i, j + 1/2),
respectively and the pressure (21) and continuity (22) equations at (i, j), omitting for the sake
of convenience the over-bar denoting averaged values, results in the following second-order
accurate system of difference equations:

6

5
εReF [u]i+1/2,j +

pi+1,j − pi,j
∆x

+
3ui+1/2,j

h2
i+1/2,j

− 2 = 0, (25)

6

5
εReF [v]i,j+1/2 +

pi,j+1 − pi,j
∆y

+
3vi,j+1/2

h2
i,j+1/2

= 0, (26)

pi,j +
ε3

Ca

(
fi+1,j + fi−1,j − 2fi,j

∆x2
+

fi,j+1 + fi,j−1 − 2fi,j
∆y2

)

−2ε cot θfi,j + εWe

(
∂ϕ

∂z

)2

|z=f |i,j = 0, (27)

hi+1/2,jui+1/2,j − hi−1/2,jui−1/2,j

∆x
+

hi,j+1/2ui,j+1/2 − hi,j−1/2ui,j−1/2

∆y
= 0, (28)

where F [ω] = u∂ω
∂x

+ v ∂ω
∂y

is the convective operator, which is discretised using a first-order

upwind scheme (Chung 2002); its value at the appropriate grid locations is obtained by inter-
polation between neighbouring nodes (Veremieiev et al 2010), as are the quantities hi±1/2,j =
(hi±1,j + hi,j) /2 and hi,j±1/2 = (hi,j±1 + hi,j) /2. The evaluation of discrete values at (i, j) for
the last quantity, the Maxwell stress term, on the right hand side of equation (27) is discussed
subsequently.

The imposition of periodic boundary conditions requires the specification of ghost nodes at
the edge of the computational domain in x and y directions, namely:

hi±nx,j±ny
= hi,j, pi±nx,j±ny

= pi,j, (29)

ui+1/2±nx,j±ny
= ui+1/2,j , vi±nx,j+1/2±ny

= vi,j+1/2, (30)

while, the Dirichlet condition for the film thickness at the inlet is assigned as an exact value
there:

h|1,j = 1. (31)

In the particular case of a periodically repeating wavy substrate extending to the boundary the
volume constraint condition, equation (14), is imposed, at the point (i, j) = (1, 1), by replacing
equation (28) there by:

nx∑

i=1

ny∑

j=1

hi,j = nxny. (32)
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3.2 Electric field equation

An analytical solution to the three-dimensional Laplace problem (7), subject to boundary
conditions (15)-(17) and the restriction ε ≪ 1 , is obtained as a Fourier series expansion using
the method of separation of variables:

ϕ (x, y, z) = 1− z +
1

lpwp

∫ lp

0

∫ wp

0

(f − 1)
∞∑

m,n=0

χmχn cos [λm (x− x̂)]

× cos [µn (y − ŷ)] exp
[
−
(√

λ2
m + µ2

n

)
εz
]
dx̂dŷ, (33)

the details of which are provided in Appendix A.
The z-derivative of the above potential, ∂ϕ/∂z|z=f , required to determine the vertical com-

ponent of the electric field, is given by:

∂ϕ

∂z
|z=f = −1− εE [f − 1] (x, y) , (34)

where E [f − 1], is the electric field Fourier operator, namely:

E [f − 1] ≈ 1

lpwp

∫ lp

0

∫ wp

0

(f − 1)
∞∑

m,n=0

χmχn

√
λ2
m + µ2

n cos [λm (x− x̂)] cos [µn (y − ŷ)] dx̂dŷ.

(35)
The Maxwell stress term, appearing on the right hand side of the pressure equation (21), is

obtained by neglecting terms O(ε3We):

εWe

(
∂ϕ

∂z

)2

|z=f ≈ εWe+ 2ε2WeE [f − 1] (x, y) , (36)

where the εWe term on the right hand side of equation (36) is a constant pressure term which
can be omitted since the DAF equations are driven by the gradient of the pressure, not by the
pressure itself.

The integrals associated with the E operator and hence the Maxwell stress term (36) which
appears in equation (27), are evaluated numerically at the point (i,j) using trapezoidal quadra-
ture, exploiting the periodicity of the solution, that is:

E [f − 1]i,j =
nx∑

k=1

ny∑

l=1

Ei,j,k,l (fk,l − 1) , (37)

with

Ei,j,k,l =
1

nxny

Nf∑

m,n=0

χmχn

√
λ2
m + µ2

n cos

(
2πm (i− k)

nx

)
cos

(
2πn (j − l)

ny

)
. (38)

N f is the number of terms in the truncated Fourier series.

3.3 Overall numerical procedure

The integro-differential electrohydrodynamic discrete equation set, (25)-(28), is solved using a
numerical approach based on Newton iteration with generally up to ten of the latter required
to reduce the residuals of the discrete equation set to a value below 10−6. For two-dimensional
flow over spanwise topography, the global Jacobian can be stored in memory and iteration
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performed efficiently using the LU decomposition with partial pivoting via library routines
readily accessible within LAPACK (Anderson et al, 1999). For the three-dimensional flows
of interest, the global matrix generated is too large to be stored in memory; consequently an
iterative matrix-free method of solution is required - in the present work the conjugate gradient
normal residual (CGNR) method with Jacobi pre-conditioning was employed, full details of
which are provided in Kelley (2003). The symmetric matrix required by the conjugate gradient
solver is obtained by multiplying the iterative equations by the transpose of the Jacobian.

Symmetry ensures that only those nx × ny elements of Ei,j,k,l, equation (38), corresponding
to all possible combinations of |i− k| and |j − l|, need to be stored; even so evaluating the
double summation for the operator E, equation (37), is computationally intensive. The effort
required can be reduced considerably, without loss of accuracy, by neglecting to sum terms
that lie far from the diagonals i = k and j = l (electric field tensors are strongly diagonally
dominant and at the same time periodic) and far from the centre of the topography where the
film approaches its asymptotic thickness. In which case, equation (37) for E can be rewritten
as:

E [f − 1]i,j ≈
∑

k,l∈Ω

Ei,j,k,l (fk,l − 1) , (39)

where:

Ω = [i− γnx/2 + 1, i+ γnx/2]× [j − γny/2 + 1, j + γny/2]
∪ [it − γnx/2 + 1, it + γnx/2]× [jt − γny/2 + 1, jt + γny/2] ,

(40)

such that (it, jt) = (trunc (xt/∆x) , trunc (yt/∆y)) are the discretised coordinates of the centre
of the topography; trunc (x) is the truncation function from real to integer. γ ∈ [0, 1] is an
adjustable parameter that can be varied to ensure guaranteed solution accuracy at an acceptable
computational cost; the values 1 and 0 correspond to integration over the whole or none of the
solution domain, respectively.

Furthermore, in order to produce accurate solutions in an acceptable time, the CGNR
method was parallelised using geometric domain decomposition, implemented via a message-
passing interface (MPI) distributed memory paradigm, see Snir, Otto, Huss-Lederman, Walker
and Dongarra (1996). For simplicity, strip-wise partitioning in the x-direction was used, en-
suring that each subdomain has two immediate neighbours, including the first and the last
subdomains due to the periodic nature of the solution. Each processor is responsible for the
calculation of matrix-vector products for one subdomain only, which requires the use of addi-
tional columns of the solution immediately to either side of a subdomain; evaluating expression
(39) over Ω results in the use of a significant number of additional columns.

In brief, on subdomain ip ∈ [0, np − 1], where np is the total number of subdomains, the
matrix-vector products are calculated for i ∈ [i1, i2], with:

i1 = loc · ip +min(ip, rem) + 1, i2 =

{
(loc + 1) · (ip + 1) , ip < rem

loc · (ip + 1) + rem, ip ≥ rem
, (41)

where loc = trunc (nx/np) and rem = nx − loc · np, which requires the subdomains to overlap
and to contain the solution for i ∈ [i3, i4], where:

i3 = min(i1, it)− γnx/2 + 1, i4 = max(i2, it) + γnx/2. (42)

Point-to-point communication is used to exchange data between neighbouring subdomains, i.e.

ip →
{

ip+1,ip<np−1

0,ip=np−1
and ip →

{
ip−1,ip>0

np−1,ip=0
, and one-to-all communication is used to exchange
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data from subdomains that contain the neighbourhood of the centre of the topography to
the remaining subdomains. Proceeding in this way requires the following restriction on the
number of subdomains, namely np ≤ 2/γ; one-to-all communication restricts the location of
the centre of the topography so that its neighbourhood covers as small a number of subdomains
as possible. For example, for np = 2/γ the centre of the topography is desired to be it = i2 so
its neighborhood covers only two subdomains: ip and ip + 1. The amount of communication
between subdomains is strictly dependant on the value of the summation parameter γ and has a
large influence on the computational time. Acceptable parallel efficiency is achieved by setting
γ = 0.2 and prescribing 8 subdomains; the computational time to convergence is reduced by a
factor of between 6 and 7, compared to using a serial method, giving a parallel efficiency gain
in excess of 75 %.

The number of operations required for the solution of the dense matrices arising from the
discretisation of the integro-differential equation set concerned, using the specified solvers (serial
LAPACK and 8 processor parallel CGNR), equate to approximately O(N3) and O(N5/2) for the
two-dimensional (spanwise topography) and three-dimensional (localised trench topography)
problems of interest. In the former case, the CPU times involved are not large in terms of
computing resource requirement and thus the number of nodes that can be employed is not a
constraint, provided that sufficient are utilised to ensure mesh independence. Solving for the
flow over a localised trench topography is a very much more demanding task in terms of CPU
time. Without the latter being too overly prohibitive, even when using parallel processing,
mesh independent solutions were generated by ensuring that the number of nodes employed
in each coordinate direction was equal to the equivalent number required to guarantee mesh
independent solutions in the case of the spanwise problems investigated, for the same range of
flow parameters. A key enabler in this respect was to exploit the spanwise symmetry of the
trench topography, by imposing symmetry boundary conditions at the mid-plane, y∗ = 0.

4 Results

In the systematic investigation which follows, film flows with We up to and including cases where
We = O(1/ε2) are considered; the second term on the right hand side of equation (36) being
significant. Although the system of the equations (19) - (22) contains five dimensionless pa-
rameters, ε, Re, Ca, We and θ, similarity considerations as well as the physics involved dictates
a dependence on three dimensionless groupings only: an inertia I = Ca1/3 · Re (Veremieiev
et al, 2010), a gravity N = Ca1/3 · cot θ (Bertozzi and Brenner, 1997) and an electric field
W = Ca2/3 · We (Tseluiko et al, 2008a), parameter. Attention is focused initially on two-
dimensional flows involving spanwise topography; this is followed by the first such exploration
of the combined effects of both inertia and a normal electric field on three-dimensional film flow
over localised topographical features.

The associated hydrodynamic stability limit of the flows of interest is important. As such,
except where direct comparison is drawn with the work of others, the results presented adhere
strictly to the classical linear stability constraint of a bounding critical Recrit, as derived for
film flow over a planar substrate (see, for example, Benjamin 1957 and Yih 1963), in terms of
the inclination angle, namely:

Recrit =
5

4
cot θ; (43)

giving, for the substrate inclination angles of θ = 2◦ and 30◦ investigated subsequently corre-
sponding Recrit values of 35.8 and 2.17, respectively.

In addition, from the standpoint of electrified film flow, for the results obtained to be
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physically and practically realisable, in all cases the size of E0 has to be less than the critical
value for the dielectric breakdown of air; this can be established for the problem of interest and
an upper limit determined via Paschen’s law, derived experimentally, see for example Meek and
Craggs (1978) or Kuffel, Zaengl and Kuffel (2000):

VB = A
√

PAD + BPAD, EB = A
√

PA/D + BPA, (44)

where VB, EB, D and PA is the breakdown potential difference between electrodes, the generated
electric field strength, the distance between electrodes and the pressure of the gas concerned,
respectively; A and B are dimensional constants characteristic of the gas. For thin water film
(fluid properties ρ = 1000kg ·m−3, µ = 0.001Pa · s and σ = 0.07N ·m−1), and taking θ = 30◦

with εe = 8.85 · 10−12F · m−1, typically ε = 0.1, Ca = ε3/6 = 0.000167 and W = 3.0, giving

values for H0

[
=

(
2σCa

ρG0 sin θ

)1/2
]
and E0

[
=

(
W

εe

)1/2

(2σρG0 sin θ)
1/4 Ca−1/12

]
of 6.9 ·10−5 m and

6.2 · 106V ·m−1, respectively. Note, for tap water readily available in the laboratory, having an
electrical conductivity typically 0.1S ·m−1 (Gray, 2008), the assumption that the same behaves
as a perfectly conducting fluid is not infringed, Melcher and Taylor (1969).

For the above parameters, Figure 2 shows the dependencies VB vs. (PA ·D) and EB/PA

vs. (PA ·D) for air with A = 6.76 · 104V · (atm ·m)−1/2 and B = 2.47 · 106V · (atm ·m)−1

based on expressions (44), which provide an acceptable approximation over the range 10−5

to 100 (atm ·m). For a distance D = 2 · 10−4m, which is greater than the film thicknesses
H0 = 6.9 ·10−5m, and a pressure of PA = 1atm an electric field strength of EB = 7.2 ·106V ·m−1

represents the dielectric breakdown limit which is greater than E0. Moreover for pressures
greater than atmospheric the breakdown electric field strength is even larger: for example,
keeping D = 2 · 10−4m, a value PA = 2atm gives EB = 1.2 · 107V ·m−1.

4.1 Two-dimensional flow

An important distinction and advantage of the current model compared to the one used pre-
viously by Tseluiko and Blyth (2009) in their two-dimensional investigation of electrified film
flows with inertia is that in their problem formulation the latter is accounted for within a stan-
dard lubrication model by the inclusion of an additional term of the form ∂

∂x

(
8

15
εReh6 ∂h

∂x

)
: first

derived by Benney (1966) and obtained via a perturbation analysis and long-wave expansion of
the unknowns of the problem on the basis that ε ≪ 1, it has appeared many times subsequently
in the context of thin films (Lin, 1974; Nakaya, 1975; Chang, 1986). This model, referred to
here as lubrication with inertia (LUBI), in accounting for inertia does so only in terms of the
first-order dynamics of the perturbation analysis, with the Reynolds number assumed strictly
only O(1). For two-dimensional flow the dimensionless steady-state LUBI model for the film
thickness, h, scaled accordingly, is given by:

∂

∂x

[
2

3
h3 +

8

15
εReh6∂h

∂x
− 2

3
ε cot θh3∂f

∂x
+

ε3

3Ca
h3∂

3f

∂x3
+

1

3
εWeh3 ∂

∂x

(
∂ϕ

∂z

)2

|z=f

]
= 0. (45)

In contrast the current formulation does not employ a perturbation analysis; it solves the
leading terms to O(1) and O(ε) in a coupled way and as a result there is no O(1) restriction
on Re. For the degenerate case Re = 0 both models are equivalent.

The values of N f , γ and nx required to ensure accurate solutions independent of them is
explored first, by considering gravity-driven, electrified film flow over a narrow, spanwise trench
topography with θ = 2◦, ε = 0.1, Re = 30, Ca = ε3/6 = 0.000167, lt = 2, xt = 50, |s0| = 0.25,
lp = 100 and δ = 0.001. The free-surface disturbance generated for the case W = 1.5 and
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W = 3.0 is obtained using the current hydrodynamic model with the Maxwell stress evaluated
via both the Fourier solution of the Laplace problem and, for comparison purposes, a Hilbert
form; note the latter, derived using complex variable theory (Tseluiko et al 2008a, 2008b), is
applicable in two-dimensions only, giving:

εWe

(
∂ϕ

∂z

)2

|z=f ≈ εWe+ 2ε2WeH

[
∂f

∂x

]
(x) , (46)

c.f. equation (36), where H, the Hilbert transform operator, is defined as:

H [g] (x) =
1

π
PV

∫
∞

−∞

g (x̂)

x− x̂
dx̂, (47)

with g (x) = ∂f/∂x and PV denoting the principal value of the integral. For periodic functions
the Hilbert operator takes the particular form:

H [g] (x) =
1

lp
PV

∫ lp

0

g (x̂) cot

[
π (x− x̂)

lp

]
dx̂. (48)

In two-dimensions, the Fourier operator, E [f − 1], namely:

E [f − 1] (x) =
1

lp

∫ lp

0

(f − 1)
∞∑

m=1

χmλm cos [λm (x− x̂)] dx̂, (49)

and the Hilbert operator, H [∂f/∂x], are equivalent; for completeness a proof of this is provided
in Appendix B.

Figures 3(a) and 3(b) show the effect of N f , when γ = 0.2 and nx = 1024, on the predicted
free-surface profile: N f = 200 terms is sufficient to produce a solution, using the Fourier integral
operator to evaluate the Maxwell stress, in excellent agreement with its Hilbert counterpart.
Figures 3(c) and 3(d), on the other hand considers the effect of γ, confirming that withN f = 200
terms and nx = 1024 nodes a value of γ = 0.2 yields the same level of agreement, regardless
of which approach is used to evaluate the Maxwell stress. Finally Figures 3(e) and 3(f), show
that these same values of N f , γ and nx = 1024 are sufficient to guarantee mesh independent
solutions for the parameter range of interest; they are indistinguishable from the same obtained
on a mesh containing twice the number of nodes, that is nx = 2048. The physical effect of
increasing W from 0 to 1.5 is the formation of a sharper, larger capillary ridge and deeper free-
surface depression accompanied by amplification of the small wavelength free-surface variations
existing upstream of the trench; increasing W further to 3.0 suppresses the capillary ridge
altogether.

Accordingly, all predictions presented henceforth were obtained with N f = 200 and a suffi-
ciently large value of γ: for the remaining two- and subsequent three-dimensional flow problems
considered these were prescribed as γ = 1.0 and γ = 0.2, respectively; in each case, as in the
above example, δ is set equal to 0.001, a value small enough to ensure solutions are effectively
independent of it (Veremieiev et al, 2010).

Having established the credentials of the current model and the accuracy of the associated
method of solution, predictions obtained with the same are compared with those obtained with
the LUBI model; both of which are contrasted with corresponding finite element solutions of
the full Navier-Stokes (N-S) equations and attendant boundary conditions, expressions (5),
(6), (9) to (14) and (17), obtained in a manner similar to Scholle et al (2008a). The problem
chosen for this purpose is that of electrified film flow, with ε = 0.2, Ca = ε2 = 0.04, θ = 30◦,
nx = 1024, over a periodically wavy substrate given by s (x∗) = s0 sin (2πx

∗/lp − π/2) with
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amplitude s0 = 1.0 and wavelength lp = 2π, see Tseluiko and Blyth (2009). Flow in the
absence of an electric field (W = 0) are considered in Figures 4(a) & (b), showing that: (i) all
three solutions are indistinguishable when Re = 0; (ii) while the DAF and N-S solutions remain
indistinguishable, for the case Re = 10, there is a clear discrepancy in terms of the predicted
free-surface shape between them and LUBI solution. The reason for the excellent agreement
between the DAF and N-S solutions can be explained with reference to Figures 4(c) & (d): in
both cases the steamline plots reveal the unidirectional nature of the flow, thus establishing
the appropriateness of the assumed classical Nusselt like velocity profile underpinning the DAF
model. The flow structure present also agrees with the findings of Scholle et al (2008a), who
predicted that no eddy, inertial or kinematic, is present when the thin film parameter as defined
there in is 2πε/lp = 0.2 ≪ 1. The discrepancy for Re = 10 shown by the LUBI solution is
attributable to the fact that for this model, Re must be strictly O(1) or smaller. Finally, Figures
4 (e) & (f) compare the free-surface profiles obtained with the DAF and the LUBI models for
electrified film flow with W = 2.92; once again, although the solutions obtained with the two
different approaches are indistinguishable for Re = 0, a discrepancy between the two emerges
for Re > 0 for the reason discussed above.

For the above problem the topography is smoothly varying; disagreement between LUBI
solutions and their DAF and N-S counterparts becomes further exacerbated when the topog-
raphy concerned is steep, yet satisfying the long-wave constraint. This is demonstrated in
Figure 5 which provides a comparison of the the free-surface disturbance predicted by the
DAF, LUBI and N-S models for the same narrow spanwise trench problem used to generate
Figure 3; θ = 2◦, ε = 0.1, Re = 0, 10, 30, Ca = ε3/6 = 0.000167, lt = 2, xt = 50, |s0| = 0.25,
lp = 100 and W = 0, 1.5. When Re = 0, Figures 5 (a) & (b) reveal, as anticipated, excellent
agreement. Increasing the the electric field strength, that is W , from 0 to 1.5 has a pronounced
effect on the resulting free-surface shape; a more detailed discussion of which is left till later.
For W = 0 and non-zero Re, Figures 5 (c) & (e), the expected discrepancy between the LUBI
and the DAF and N-S solutions is clearly seen, especially when Re = 30, the latter two being
indistinguishable. Figures 5 (d) & (f) show the same features occurring but this time for the
case W = 1.5; of particular note is the predicted over-amplification of the upstream oscillatory
behaviour of the free-surface associated with the LUBI solution.

Continuing with the theme of steep topography, the next problem explored is that of elec-
trified film flow on an inclined plane containing step-down and step-up topography forming
the sides of a wide spanwise trench; as in the case of of the narrow trench explored above, it
represents a natural and important precursor to the three-dimensional flows investigated subse-
quently. It is the same problem as considered by Tseluiko et al (2008a) for the one case Re = 0
and θ = 90◦, with ε = 0.1, Ca = ε3 = 0.001. The topography used in their analysis (|s0| = 2.0)
lies outside the bounds for which the long-wave approximation can be considered as strictly
valid (Gaskell et al, 2004). Note also that, the step-up solutions they report are in error; the
same having been established following correspondence with and further calculations by the
authors (Blyth, 2010); the correct solution is provided in Veremieiev (2011). In the present
work a more representative smaller step height is employed and the investigation extended to
the case Re > 0 (θ = 2◦, ε = 0.1 and Ca = ε3/6 = 0.000167, |s0| = 0.25, with lt = 80, lp = 200,
xt = 120, nx = 2048).

For the step-down cases, Figures 6(a) and 6(b), increasing Re from 0 to 30 when W = 0
leads to an increase in the size of the capillary ridge, while increasing the electric field strength,
for both Re = 0 and 30, has a much more dramatic effect on the overall free-surface profile.
Increasing W to 1.5 leads to a downstream displacement and narrowing of the capillary ridge
and to a broad free-surface trough just upstream of the step. Increasing W further to 3.0 is
sufficient to completely suppress the capillary ridge; this is accompanied by a deepening of
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the free-surface trough. For the step-up cases, Figures 6(c) and 6(d), increasing Re to 30 in
the absence of an electric field results in a slightly deeper free-surface trough, just upstream
of the step, while increasing W to 1.5 leads to a downstream displacement toward the step
and a narrowing of this trough together with the formation of a free-surface hump. Unlike the
capillary ridge at a step-down, increasing W to 3.0 leads to further enhancement of the free-
surface hump accompanied by a further downstream displacement. Shown also, for comparison
purposes, Figures 6(e) and 6(f), are the results obtained for the flow over the same narrow
trench topography as discussed above. They show that the flow is only marginally affected
by increasing inertia in the absence of an electric field, resulting in a slight enhancement of
both the capillary ridge and free-surface depression. As in the step cases, the free-surface
disturbance experienced it is much more sensitive to the value of W : increasing W from 0 to
1.5 leads to significant amplification of the capillary ridge and free-surface depression together
with the formation of a downstream hump, while increasing W further to 3.0 gives rise to
almost complete suppression of the capillary ridge, a diminution of the free-surface depression
and amplification of the hump.

For both topographic features, the narrow and wide trench, simultaneous amplification
occurs of the small wavelength free-surface disturbances lying upstream, which are present even
when W = 0; the nature of this oscillatory behaviour, observed also in Figure 3, is a function
of the competition between the geometry (topography height and steepness) producing the
free-surface curvature and capillary pressure tending to oppose it, see for example Kalliadasis,
Bielarz and Homsy (2000) and the experimental work of Stillwagon and Larson (1988, 1990).
A similar feature is observed in the three-dimensional thin film flows explored subsequently.

The results of a corresponding extensive parameter study into the effects of non-zero Re and
W on the free-surface profiles associated with the step-up and step-down sides of the wide trench
problems considered in Figures 6 (a) to (d), are summarised in Figure 7. Figure 7(a) shows
that for the step-down case, for a fixed Re, the predicted maximum value of the capillary ridge
increases monotonically with increasing W , peaking before diminishing more rapidly, again
monotonically. This result shows also, that the larger the value of Re the larger the value of W
required to suppress the inertially-enhanced free-surface disturbances. For example, complete
suppression of the capillary ridge (corresponding to a maximum value f = 1) for Re = 0, 30
and 50 is achieved by values of W ≈ 2.25, 2.35 and 2.45, respectively. In the case of a step-up,
Figure 7(b), the maximum value corresponds to that for the free-surface hump that appears
which is found to increase monotonically with increasing W . However, in contrast to the step-
down case, the maximum value remains more or less unaffected by the value of the Re for values
of W less than approximately 1.75; beyond which point the curves diverge while continuing
to increase monotonically before plateauing off. In the step-up case, increasing inertia acts to
reduce the size of the electric-field induced free-surface amplification beyond W ≈ 1.75; while
in the step-down case, increasing inertia increases the amplification of the capillary ridge for
all values of W up until the point of complete suppression.

Note that Figure 7 contains results for Re = 50, a value which is strictly outside of the
critical Re limit of 35.8 sanctioned by equation (43). Nevertheless, the rationale for including
it is that in the experiments of Decré and Baret (2003) they were able to achieve stable flows
for thin films on a substrate inclined at θ = 30◦ to the horizontal and containing topographical
features of the same dimensions, at a Re value of 3.54, one significantly larger than the critical
limit of 2.17 by a factor of 1.63. Being conscious of the fact that experiments are prone to
measurement errors, while noting as discussed in the Introduction that topography has been
reported to increase the critical Re beyond which thin films become unstable, applying the
same scaling factor for the case of film flow on a substrate inclined at θ = 2◦ to the horizontal
results in a critical Re limit of 58.3. Although a speculative result recognising that an applied
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electric field can have an opposite, de-stablising effect, it is non-the-less complementary. In
their work, Tseluiko et al (2008a) reported, for the case Re = 0, that while the maximum
value of the free-surface hump formed at a step-up by the presence of an electric field increased
monotonically with increasing W , the maximum value of the free-surface at the capillary ridge
formed at a step-down decreased monotonically from its largest value at W = 0 with increasing
W . The difference in behaviour associated with the step-down to that observed in the present
work, is a consequence of their choice of |s0| > 1.0

Figure 8 considers the effect of W on the various stress contributions to the fluid pressure
for zero Reynolds number flow over the narrow trench topography considered in Figures 6(e)
& (f), for a substrate inclination angle, θ, of 30◦. Since the hydrostatic pressure is only O(ε)
in this case, the free-surface profile for W > 0 is dominated by the competition between the
O(1) capillary and Maxwell stress terms. For W = 1.5, the large negative Maxwell stress just
upstream of the trench requires a compensating large, positive capillary pressure which acts
so as to enhance the capillary ridge. Similarly, the large positive Maxwell stress peak over the
trench requires a large negative capillary pressure which enhances the size of the free-surface
trough. For W = 3.0, the significantly reduced Maxwell stresses upstream of the topography
require much smaller capillary pressures (smaller even than for the W = 0 case) leading to an
effective suppression of the capillary ridge.

4.2 Three-dimensional flow

Turning now to the more practically relevant case of three-dimensional film flow, use is made of
the electrohydrodynamic formulation of Section 2 to investigate a series of problems associated
with the flow of a thin electrified water film over a localised trench topography. The substrate,
lp = wp = 100, containing the trench, aspect ratio A = wt/lt, lt = 2, |s0| = 0.25 centred at
xt = yt = 50, is inclined at θ = 30◦ to the horizontal (ε = 0.1, Ca = ε3/6 = 0.000167 and
exploiting symmetry nx = 1024, ny = 512).

Figures 9 and 10 analyse the effect of W on the transition of the flow from a three- to
an essentially two-dimensional one through the centre of the topography in the steamwise
direction, as the trench aspect ratio A = wt/lt is increased. Figure 9(a)-(f) show the free-surface
disturbance that is generated for the cases A = 5 and 10 when W = 0, 1.5 and 3.0. As reported
in Gaskell et al (2004), for W = 0 as shown in Figures 10(a) and 10(b), decreasing A leads to a
much reduced upstream capillary ridge and the formation of a small downstream surge caused
by liquid entering the sides of the trench. IncreasingW to 1.5 leads to a significant amplification
of both the capillary ridge, just upstream of the trench, and the free-surface depression over
the trench. This is accompanied by the disappearance of the downstream surge for A = 1.
Increasing W further to 3.0 causes a general diminution in the magnitude of the free-surface
disturbances; this is seen most clearly by the free-surface profiles given in Figures 10(e) and
10(f). Shown for comparison purposes on each of the plots is the free-surface disturbance for
infinite A, that is an equivalent spanwise trench.

Figure 11 shows the effect of gradually increasing W , for Re = 0, in steps of 0.5 from 0
to 3.5, on the free-surface disturbances generated by flow over a square trench topography,
A = 1. It reveals that increasing W from 0 to 0.5 causes the horseshoe-shaped disturbance
typical of such flows to broaden in the spanwise direction, accompanied by enhancement of the
upstream capillary ridge and a diminution of the downstream surge. As in the two-dimensional
spanwise trench case, Figure 6(e), increasing W beyond 0.5 leads to a significant amplification
of both the free-surface peak and trough. This is seen particularly clearly for W = 1.5, where
the maximum non-dimensional height of the free surface increases from 1.01 (for W = 0) to
1.08 and the minimum free-surface height decreases from 0.89 to 0.86. For W ≥ 1 the familiar
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comet tail and bow-wave disturbances have all but disappeared. In contrast, increasing W
from 1.0 to 2.0 causes the upstream capillary ridge to grow in magnitude and at W ≈ 1.5 a
second capillary ridge is formed upstream of the first one. Beyond W = 1.5 the magnitude
of the primary free-surface peaks and troughs are reduced and become more sharply focussed.
For W = 3.5 the free-surface disturbances have been effectively planarised with maximum and
minimum non-dimensional free-surface heights of just 1.02 and 1.05, respectively. The effect of
W on the magnitude of the free-surface disturbances are shown more clearly by the streamwise
and spanwise free-surface profiles shown in Figure 12.

Next the same sequence of events is considered but this time for the case of significant
inertia, by taking θ = 2◦. The cases shown in Figures 13 and 14 can be compared qualitatively
with their counterparts shown in Figures 11 and 12 for which Re = 0 and θ = 30◦. Clearly,
increasing W has a much larger influence than increasing Re and these are shown more clearly
via the corresponding streamwise and spanwise free-surface profiles through the centre of the
topography. In essence, increasing inertia when the value of W is fixed simply results in a
slightly greater minimum streamwise depression across the trench that is shifted upstream. As
noted in the section on two-dimensional flows, free-surface disturbances in electrified films arise
due to the competition between the capillary and Maxwell stresses that act in opposition to
each other.

Figure 15 illustrates the distribution of the capillary pressure and Maxwell stress in three-
dimensional flow via contour plots for the W = 0, 1.5 and 3.0 cases considered in Figures
11 and 12. In the absence of Maxwell stresses, W = 0, the regions of negative and positive
capillary pressure upstream and downstream of the trench topography, respectively, result in the
capillary ridge and downstream surge. Increasing W to 1.5, leads to larger regions of significant
positive and negative capillary pressure that are opposed by the development of larger regions of
significant Maxwell stress. The larger values of negative capillary pressure, in particular, result
in the large free-surface peak seen in Figure 11(d) while the large positive capillary pressures
give rise to a larger free-surface depression over the topography. The competition between the
capillary and Maxwell stresses are seen more clearly in the free-surface profiles given in Figure
16. This shows, in particular, how the capillary and Maxwell stresses effectively cancel each
other out at higher W values, resulting in the planarised free-surface profiles shown in Figures
11 and 12.

5 Conclusions

Two- and three-dimensional electrified, continuous gravity-driven thin film flow over topogra-
phy at finite Reynolds numbers has been explored by the novel coupling of a depth-averaged
formulation of the Navier-Stokes equations with a general Fourier series solution of Laplace’s
equation for the electric field potential. For two-dimensional flow, the spanwise topography
investigated include discrete step-up and step-down features and a narrow trench comprised of
the same in close proximity, together with flow over a smooth periodically varying substrate;
localised trench topography only is considered in the case of three-dimensional flow.

The detailed investigation carried out with regard to two-dimensional flow reveals a number
of important new results, both from a theoretical and physical standpoint. Among these is the
importance of the choice of hydrodynamic model if Reynolds number effects are to be captured
satisfactorily and the same applied in a region of parameter space for which it is valid. That
the current model is superior to a lubrication one, containing an additional term to account
for inertia, is amply demonstrated; in particular with reference to corresponding finite element
solutions for film flow over both spanwise smooth sinusoidally varying and trench topography.
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A key outcome concerns the predicted free-surface response to increasing electric field strength
for the case of film flow over spanwise step-down and step-up topography, the same being the
constituent parts of a wide trench. For the non-zero Reynolds number values explored, at
a step-down as the electric field strength is increased the free-surface maximum disturbance
first increases monotonically, reaches a peak and then decreases monotonically to reach a point
where the characteristic capillary ridge is completely suppressed. At a step-up the downstream
hump which forms as the electric field strength is increased constitutes the maximum free-
surface disturbance and which continues to increase monotonically; the larger the value of the
Reynolds number the smaller the increase achieved.

As to the more practically relevant three-dimensional flow problems considered, increasing
inertia generally enhances the magnitude of the capillary ridge that forms upstream of localised
trench topography and reduces the magnitude of the free-surface surge as fluid exits the trench
region. However, for the parameter range considered, the inclusion of an electric field dom-
inates inertial effects so that inertially-induced disturbances can generally be suppressed by
increasing the electric field strength. The electrified thin film flow over the trench topography
cases considered clearly demonstrate that although the introduction of an electric field initially
amplifies the size of the free-surface disturbances in the neighbourhood of the trench, increasing
its strength eventually suppresses the persistent bow-wave disturbances that arise, leading to a
more planarised film surface. In addition, for higher electric field strengths the pressure inside
of the trench is raised restricting flow into it as the film passes over, thus reducing the amount
of the fluid emerging from the trench at its downstream side and consequently the size of the
downstream surge. The corresponding variations in the balancing capillary pressure explain
the initial enhancement and then suppression of free-surface disturbances as Weber number
increases. Maxwell stress depends not only on the value of the Weber number but also on
the degree of the free-surface disturbance; for higher Weber number values the free surface be-
comes more planar, the Maxwell stresses diminish, which as a consequence reduces the capillary
pressure and so on.

With regard to the issue of product quality, it is found that for flow over both steep spanwise
and localised topography, regardless of whether or not inertia is present, while an electric field
can be used to suppress the principal gross free-surface disturbances toward planarity, large
values exacerbate the underlying oscillatory behaviour that arises as a consequence of the
competition between the underlying geometry (topography height and steepness) giving rise
to free-surface curvature and surface tension tending to oppose it. The observed behaviour
is reminiscent of the ribbing instability that arises in the nip region of a forward roll coater,
in that beyond a critical roll speed ratio additional free-surface curvature is created in the
form of ribs to increase capillary pressure and maintain pressure equilibrium at the liquid-air
interface, Weinstein and Ruschak (2004). The general observation is that when an electric field
is present, the resultant free-surface disturbance is a consequence of the competition between the
dominant capillary pressure and Maxwell stresses generated, with hydrostatic pressure having
only a minor influence.
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Appendix A

The three-dimensional boundary value problem (7) for the electric field, together with boundary
conditions (15) - (17), is solved by the method of separation of variables together with the same
expanded as a Fourier series.

First the problem is made more tractable, see Tseluiko et al (2008a), by: (i) defining a shifted
electric field potential, ϕ̃ = ϕ− 1+ z, measuring the deviation from a uniform electric field; (ii)
rescaling the z-coordinate with respect to ε such that z̃ = εz. Then with (x, y, z̃) = (X, Y, Z)/L0

and ∇ =
(

∂
∂x
, ∂
∂y
, ∂
∂z̃

)
, the equivalent boundary value problem for ϕ̃ (x, y, z̃) is

∇2ϕ̃ = 0, (50)

subject to the boundary conditions:

ϕ̃|z̃=εf = f − 1, (51)

∇ϕ̃|z̃→∞ = 0, (52)

ϕ̃|x=lp = ϕ̃|x=0, ϕ̃|y=wp
= ϕ̃|y=0. (53)

Under the over arching assumption that ε ≪ 1 the free-surface boundary condition (51) can be
approximated as

ϕ̃|z̃=0 = f − 1. (54)

Now, postulating the solution to have a separable form

ϕ̃ = A (x)B (y)C (z̃) , (55)

substituting it into equation (50) and dividing through by ϕ̃ leads to the following equation for
the separable components:

1

A

d2A

dx2
+

1

B

d2B

dy2
+

1

C

d2C

dz̃2
= 0, (56)

which is satisfied via solutions of the following eigenvalue problems:

d2A

dx2
+ λ2A = 0,

d2B

dy2
+ µ2B = 0,

d2C

dz̃2
−

(
λ2 + µ2

)
C = 0, (57)

where λ and µ are real constants. Solving equations (57) subject to boundary conditions (52)
and (53) leads to the following eigenvalues and eigenfunctions:

λm = 2πm/lp, Am (x) = c1,m cos (λmx) + c2,m sin (λmx) ,

µn = 2πn/wp, Bn (y) = c3,n cos (µny) + c4,n sin (µny) ,

Cm,n (z̃) = c5,m,n exp
[
−
(√

λ2
m + µ2

n

)
z̃
]
, for m = 0, 1...∞, n = 0, 1...∞, (58)

which in turn results in a shifted potential of the form:

ϕ̃ (x, y, z̃) =
∞∑

m,n=0

[am,n cos (λmx) cos (µny) + bm,n sin (λmx) sin (µny)

+ cm,n cos (λmx) sin (µny) + dm,n sin (λmx) cos (µny)] exp
[
−
(√

λ2
m + µ2

n

)
z̃
]

(59)
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where am,n = c5,m,nc1,mc3,n, bm,n = c5,m,nc2,mc4,n, cm,n = c5,m,nc1,mc4,n and dm,n = c5,m,nc2,mc3,n
are arbitrary constants. From the free-surface boundary condition (54) it follows that these
coefficients are the two-dimensional Fourier series expansion coefficients of (f − 1):

am,n =
χmχn

lpwp

∫ lp

0

∫ wp

0

(f − 1) cos (λmx̂) cos (µnŷ) dx̂dŷ, (60)

bm,n =
χmχn

lpwp

∫ lp

0

∫ wp

0

(f − 1) sin (λmx̂) sin (µnŷ) dx̂dŷ, (61)

cm,n =
χmχn

lpwp

∫ lp

0

∫ wp

0

(f − 1) cos (λmx̂) sin (µnŷ) dx̂dŷ, (62)

dm,n =
χmχn

lpwp

∫ lp

0

∫ wp

0

(f − 1) sin (λmx̂) cos (µnŷ) dx̂dŷ, (63)

χm =

{
1, if m = 0

2, if m > 0
. (64)

Since cos(λmx) cos(λmx̂) + sin(λmx) sin(λmx̂) = cos [λm(x− x̂)] equation (59) can be ex-
pressed as follows:

ϕ̃ (x, y, z̃) =
1

lpwp

∫ lp

0

∫ wp

0

(f − 1)
∞∑

m,n=0

χmχn cos [λm (x− x̂)]

× cos [µn (y − ŷ)] exp
[
−
(√

λ2
m + µ2

n

)
z̃
]
dx̂dŷ. (65)

The potential is obtained by returning from the rescaled vertical coordinate z̃ to z and then
from the shifted to the initial form of the electric potential:

ϕ (x, y, z) = 1− z +
1

lpwp

∫ lp

0

∫ wp

0

(f − 1)
∞∑

m,n=0

χmχn cos [λm (x− x̂)]

× cos [µn (y − ŷ)] exp
[
−
(√

λ2
m + µ2

n

)
εz
]
dx̂dŷ. (66)

Appendix B

Proof of the equivalence of the Hilbert operator, H [∂f/∂x], and two-dimensional Fourier op-
erator, E [f − 1], for the Maxwell stress.

Use is made of the following two expressions:
1. The Fourier expansions of (f − 1) and ∂f/∂x:

f (x)− 1 =
∞∑

m=0

[am cos (λmx) + bm sin (λmx)] , (67)

∂f

∂x
=

∞∑

m=1

λm [−am sin (λmx) + bm cos (λmx)] , (68)

where

am =
χm

lp

∫ lp

0

(f − 1) cos (λmx̂) dx̂, bm =
χm

lp

∫ lp

0

(f − 1) sin (λmx̂) dx̂. (69)

21



2. The Principal Values (PV) of integrals for positive number λm > 0:

PV

∫
∞

−∞

sin [λm (x− x̂)]

x̂
dx̂ = sin (λmx)PV

∫
∞

−∞

cos (λmx̂)

x̂
dx̂

− cos (λmx)PV

∫
∞

−∞

sin (λmx̂)

x̂
dx̂ = −π cos (λmx) , (70)

PV

∫
∞

−∞

cos [λm (x− x̂)]

x̂
dx̂ = cos (λmx)PV

∫
∞

−∞

cos (λmx̂)

x̂
dx̂

+sin (λmx)PV

∫
∞

−∞

sin (λmx̂)

x̂
dx̂ = π sin (λmx) , (71)

where Dirichlet integration has been used.
Starting with the Hilbert operator (47), inserting into it the Fourier representation (68) and

taking into account the PV integrals (70) and (71) gives:

H

[
∂f

∂x

]
(x) =

1

π
PV

∫
∞

−∞

∂f (x̂)

∂x̂

dx̂

x− x̂
=

1

π
PV

∫
∞

−∞

∂f (x− x̂)

∂x̂

dx̂

x̂

=
1

π

∞∑

m=1

λmPV

∫
∞

−∞

{
−am

sin [λm (x− x̂)]

x̂
+ bm

cos [λm (x− x̂)]

x̂

}
dx̂

=
∞∑

m=1

λm [am cos (λmx) + bm sin (λmx)]

=
1

lp

∫ lp

0

(f − 1)
∞∑

m=1

χmλm cos [λm (x− x̂)] dx̂ = E [f − 1] (x) , (72)

which is the two-dimensional Fourier operator (49).
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Figure 1: Schematic of gravity-driven three-dimensional flow over a substrate containing a
trench topography in the presence of a uniform electric field applied normal to the substrate.
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Figure 2: Plot of VB (full line) and EB/PA (dashed line) against PA · D, for the dielectric
breakdown of air. The point at which D = 2 · 10−4 m, PA = 1 atm and EB = 7.2 · 106V ·m−1

is denoted by the dotted lines.
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Figure 3: The effect of the value of N f for γ = 0.2 and nx = 1024 (top), γ for N f = 200 and
nx = 1024 (middle) and nx for γ = 0.2 and N f = 200 (bottom) on DAF predicted free-surface
profiles for thin film flow over a spanwise narrow trench topography (θ = 2◦, Re = 30, lt = 2,
|s0| = 0.25), see Figure 5; W = 1.5 (left) and W = 3.0 (right). The corresponding results
obtained with the Hilbert integral operator (48) are included in (a) and (b) for comparison
purposes; these are found to be in excellent agreement with and indistinguishable from the
results obtained with the Fourier integral operator (49) for N f ≥ 100 and thus are not included
in (c) to (f). Flow is from left to right.
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Figure 4: Film flow over a spanwise sinusoidally varying topography (θ = 30◦, wavelength
lp = 2π, amplitude s0 = 1.0). Comparison between LUBI, DAF and N-S predictions: (a), (c),
(e) Re = 0; (b), (d), (f) Re = 10; (a), (b), (c), (d) W = 0; (e), (f) W = 2.92; (a), (b), (e), (f)
free-surface disturbance; (c), (d) streamlines showing the internal flow structure. Flow is from
left to right.
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Figure 5: Free-surface disturbance for film flow over a spanwise narrow trench (θ = 2◦, lt = 2
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Figure 6: Free-surface profiles for electrified film flow (W = 0, 1.5, 3.0), Re = 0 (left) and
Re = 30 (right) over: (a), (b) the step-down and (c), (d) step-up part of a wide spanwise wide
trench (θ = 2◦, lt = 80 and |s0| = 0.25); (e), (f) the spanwise narrow trench of Figure 5 (θ = 2◦,
lt = 2 and |s0| = 0.25). Flow is from left to right.

28



0 0.5 1 1.5 2 2.5 3
1

1.01

1.02

1.03

1.04

1.05

W

f

(a)
Re = 10
Re = 30
Re = 50

0 0.5 1 1.5 2 2.5 3
1

1.01

1.02

1.03

1.04

1.05

W

f

(b)

Re = 10
Re = 30
Re = 50
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Figure 8: Contributions to the overall pressure for different electric field strengths, W = 0, 1.5
and 3.0, when Re = 0, for thin film flow over the spanwise narrow trench (θ = 30◦, lt = 2 and
|s0| = 0.25): (a) hydrostatic pressure; (b) capillary pressure; (c) Maxwell stress; (d) overall
pressure. Flow is from left to right.
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Figure 9: Plots of the free-surface disturbance resulting from film flow, Re = 0, over a localised
rectangular trench topography (θ = 30◦, lt = 2 and |s0| = 0.25), showing the effect of aspect
ratio, A = wt/lt. From top to bottom, W = 0, 1.5, 3.0; A = 5 (left) and A = 10 (right). The
arrow indicates the direction of flow.

31



−20 −15 −10 −5 0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

x*

f

 

 

A = 1

A = 5

A = 10

A → ∞

(a)
W = 0

−20 −15 −10 −5 0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

y*

f

 

 

A = 1

A = 5

A = 10

(b)
W = 0

−20 −15 −10 −5 0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

x*

f

 

 

A = 1

A = 5

A = 10

A → ∞

(c)
W = 1.5

−20 −15 −10 −5 0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

y*

f

 

 

A = 1

A = 5

A = 10

(d)
W = 1.5

−20 −15 −10 −5 0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

x*

f

 

 

A = 1

A = 5

A = 10

A → ∞

(e)
W = 3.0

−20 −15 −10 −5 0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

y*

f

 

 

A = 1

A = 5

A = 10

(f)
W = 3.0

Figure 10: Streamwise (left) and spanwise (right) free-surface profiles through the centre of
the localised rectangular trench topography of Figure 9, showing the effect of aspect ratio,
A = wt/lt. From top to bottom, W = 0, 1.5, 3.0. The streamwise profile for the corresponding
spanwise flow is shown for comparison purposes and labelled A → ∞.
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Figure 11: Plots of the free-surface disturbance resulting from film flow, Re = 0, over a localised
square trench topography, θ = 30◦, lt = wt = 2 and |s0| = 0.25: W = (a) 0, (b) 0.5, (c) 1.0, (d)
1.5, (e) 2.0, (f) 2.5, (g) 3.0 and (h) 3.5. The arrow indicates the direction of flow.
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Figure 12: Streamwise (top) and spanwise (bottom) free-surface profiles through the centre of
the localised square trench topography of Figure 11: (a), (c) W = 0, 0.5, 1.0 and 1.5; (b), (d)
W = 2.0, 2.5 and 3.0.
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Figure 13: Plots of the free-surface disturbance resulting from film flow over a localised square
trench topography, θ = 2◦, lt = wt = 2 and |s0| = 0.25: from top to bottom, W = 0, 1.5, 3.0;
Re = 0 (left) and Re = 30 (right). The arrow indicates the direction of flow.
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Figure 14: Streamwise (left) and spanwise (right) free-surface profiles through the centre of the
localised square trench topography of Figure 13, showing the effect of changing Re from 0 to
30. From top to bottom, W = 0, 1.5, 3.0.
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Figure 15: Pressure budget contour plots for thin film flow, Re = 0, over the localised square
trench topography of Figure 11: (a), (b), (c) capillary pressure for W = 0, 1.5, 3.0; (d), (e), (f)
Maxwell stress for W = 0, 1.5, 3.0; (g), (h), (i) overall pressure for W = 0, 1.5, 3.0. Contour
values are chosen to be equal in magnitude but opposite in sign |p| = 0.2,0.4,0.6,0.8,1.0,1.2,1.4.
Negative contour values are indicated as dotted lines. Hydrostatic pressure is not plotted since
its modulus is less than the smallest contour value. The direction of flow is from left to right.
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Figure 16: Streamwise (left) and spanwise (right) pressure budget profiles through the centre of
the localised square trench topography of Figure 11, Re = 0: (a), (b) hydrostatic pressure; (c),
(d) capillary pressure; (e), (f) Maxwell stress; (g), (h) overall pressure. Comparison is made
for W = 0, 1.5 and 3.0.
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[24] González, A., Castellanos, A., 1996 Nonlinear electrohydrodynamic waves on films falling
down an inclined plane. Phys. Rev. E 53(4), 3573-3578.

[25] Gramlich, C.M., Kalliadasis, S., Homsy, G.M., Messer, C., 2002 Optimal leveling of flow
over one-dimensional topography by Marangoni stresses. Phys. Fluids 14(6), 1841-1850.

[26] Gray, N.F., 2008 Drinking Water Quality: Problems and Solutions. 2nd Edition. Cam-
bridge University Press.

[27] Griffing, E.M., Bankoff, S.G., Miksis, M.J., Schluter, R.A., 2006 Electrohydrodynamics of
thin flowing films. J. Fl. Eng.-Trans. ASME 128(2), 276-283.

[28] Gu, F., Liu, C.J., Yuan, X.G., Yu, G.C., 2004 CFD simulation of liquid film flow on
inclined plates. Chem. Engng. Technol. 27, 1099-1104.
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