227 research outputs found

    A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC

    Get PDF
    Rationale: Unlike traditional biopsy, liquid biopsy, which is a largely non-invasive diagnostic and monitoring tool, can be performed more frequently to better track tumors and mutations over time and to validate the efficiency of a cancer treatment. Circulating tumor cells (CTCs) are considered promising liquid biopsy biomarkers; however, their use in clinical settings is limited by high costs and a low throughput of standard platforms for CTC enumeration and analysis. In this study, we used a label-free, high-throughput method for CTC isolation directly from whole blood of patients using a standalone, clinical setting-friendly platform. Methods: A CTC-based liquid biopsy approach was used to examine the efficacy of therapy and emergent drug resistance via longitudinal monitoring of CTC counts, DNA mutations, and single-cell-level gene expression in a prospective cohort of 40 patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. Results: The change ratio of the CTC counts was associated with tumor response, detected by CT scan, while the baseline CTC counts did not show association with progression-free survival or overall survival. We achieved a 100% concordance rate for the detection of EGFR mutation, including emergence of T790M, between tumor tissue and CTCs. More importantly, our data revealed the importance of the analysis of the epithelial/mesenchymal signature of individual pretreatment CTCs to predict drug responsiveness in patients. Conclusion: The fluid-assisted separation technology disc platform enables serial monitoring of CTC counts, DNA mutations, as well as unbiased molecular characterization of individual CTCs associated with tumor progression during targeted therapy

    Fabrication of core/shell ZnWO4/carbon nanorods and their Li electroactivity

    Get PDF
    Carbon-coated ZnWO4 [C-ZW] nanorods with a one-dimensional core/shell structure were synthesised using hydrothermally prepared ZnWO4 and malic acid as precursors. The effects of the carbon coating on the ZnWO4 nanorods are investigated by thermogravimetry, high-resolution transmission electron microscopy, and Raman spectroscopy. The coating layer was found to be in uniform thickness of approximately 3 nm. Moreover, the D and G bands of carbon were clearly observed at around 1,350 and 1,600 cm-1, respectively, in the Raman spectra of the C-ZW nanorods. Furthermore, lithium electroactivities of the C-ZW nanorods were evaluated using cyclic voltammetry and galvanostatic cycling. In particular, the formed C-ZW nanorods exhibited excellent electrochemical performances, with rate capabilities better than those of bare ZnWO4 nanorods at different current rates, as well as a coulombic efficiency exceeding 98%. The specific capacity of the C-ZW nanorods maintained itself at approximately 170 mAh g-1, even at a high current rate of 3 C, which is much higher than pure ZnWO4 nanorods

    Lepidopterous Insect Fauna of Gyeongju National Park in Korea

    Get PDF
    AbstractLepidopterous insect fauna of Gyeongju National Park, was investigated during 25-28 April and 10-11 August 2007, especially in Mt. Namsan Zone. In total, 150 species of 21 families belonging to Lepidoptera were identified through this study. Therefore, a total of 183 species under 25 families are recorded from Gyeongju National Park, including the previous studies

    Performance Analysis of Relative Positioning using GPS and BDS signals

    Get PDF
    In general, the satellite signal received by GNSS receivers has errors such as satellite clock error, orbit error, ionospheric delay and tropospheric delay. In environments where high positioning accuracy is required, these error factors can be eliminated by using relative positioning using code measurements with carrier phase measurements. If relative positioning is performed using carrier phase measurements, it is possible to have positioning accuracy of cm level. In this paper, we analyse the positioning accuracy of relative positioning using the L1 signal of GPS and BDS. For this study, we collect GPS and BDS signal using two low-cost receivers. We also designed a software-based platform to perform the relative positioning. Finally, we analyse relative positioning accuracy for GPS/BDS integrated system as well as relative positioning accuracy for GPS and BDS

    Time reduction effect of the enhanced TACT method for high-rise residential buildings

    Get PDF
    The finish work on high-rise residential buildings is performed simultaneously with mechanical and electrical construction work, which results in frequent work interference and delay. This significantly hinders efficient schedule management. Critical Path Method (CPM) is inefficient when applied to high-rise residential building projects in which work is repeatedly carried out for each floor. Line-of-Balance (LOB) is widely used for its effectiveness in managing repetitive work. LOB was developed into TACT and eTACT (enhanced-TACT) to combine heterogeneous works con­tinuously. In particular, the eTACT schedule management method has an advantage in that it is capable of systemati­cally connecting detailed construction, mechanical and electrical construction projects using a work planning template. This study evaluates the time reduction effect of the eTACT method for a high-rise residential building. A comparative analysis of data on 102 cases of non-applied projects and 44 cases of projects using the eTACT method over a period of 10 years is presented to verify its effectiveness. The result shows that finish work time was reduced by 25% or about 53 days on average. First published online: 18 Dec 201

    Performance analysis of GPS / Radar integrated navigation system

    Get PDF
    GPS is used in various navigation fields. However, visibility is lowered in such an environment as urban canyon, and navigation performance deteriorates due to the visibility, multipath effect. So, in order to improve navigation performance in this environment, methods of integration with other sensors have been studied. In this paper, we use radar to measure the range of the landmark with known position. An integration algorithm is designed using GPS pseudorange and radar measurement

    Exploration of New Electroacupuncture Needle Material

    Get PDF
    Background. Electro Acupuncture (EA) uses the acupuncture needle as an electrode to apply low-frequency stimulation. For its safe operation, it is essential to prevent any corrosion of the acupuncture needle. Objective. The aim of this study is to find an available material and determine the possibility of producing a standard EA needle that is biocompatible. Methods. Biocompatibility was tested by an MTT assay and cytotoxicity testing. Corrosion was observed with a scanning electron microscope (SEM) after 0.5 mA, 60 min stimulation. The straightness was measured using a gap length of 100 mm, and tensile testing was performed by imposing a maximum tensile load. Results. Phosphor bronze, Ni coated SS304, were deemed inappropriate materials because of mild-to-moderate cytotoxicity and corrosion. Ti-6Al-4V and SS316 showed no cytotoxicity or corrosion. Ti-6Al-4V has a 70 times higher cost and 2.5 times lower conductivity than SS316. The results of both straightness and tensile testing confirmed that SS316 can be manufactured as a standard product. Conclusion. As a result, we confirmed that SS316 can be used a new EA electrode material. We hope that a further study of the maximum capacity of low-frequency stimulation using an SS316 for safe operation

    A GPS multipath mitigation technique using correlators with variable chip spacing

    Get PDF
    Various methods have been studied to mitigate the influence of multipath signals, representative methods focused the correlator structure are the Narrow Correlator and the Multipath Elimination Technique (MET). It is known that the MET has better performance than Narrow Correlator but it requires more complexity. In this paper, we propose a technique that has similar performance to the MET and it uses only three correlators like the Narrow Correlator. This technique switches the chip spacing of the correlators for each Predetection Integration Time (PIT) and applies it to the MET. For the performance analysis, we implemented a software platform and compared the code tracking error of the proposed technique with that of the Narrow Correlator and the MET

    First Demonstration of Ultra-Thin SiGe-Channel Junctionless Accumulation-Mode (JAM) Bulk FinFETs on Si Substrate with PN Junction-Isolation Scheme

    Get PDF
    A SiGe-channel junctionless-accumulation-mode (JAM) PMOS bulk FinFETs were successfully demonstrated on Si substrate with PN junction-isolation scheme for the first time. The JAM bulk FinFETs with fin width of 18 nm exhibits excellent subthreshold characteristics such as subthreshold swing of 64 mV/decade, drain-induced barrier lowering (DIBL) of 40 mV/V and high Ion/Ioff current ratio ( \u3e 1 x 105). The change of substrate bias from 0 to 5 V leads to the threshold voltage shift of 53 mV by modulating the effective channel thickness. When compared to the Si-channel bulk FinFETs with fin width of 18 nm, Si and SiGe channel devices exhibits comparable subthreshold swing and DIBL. For devices with longer fin width, SiGe channel devices exhibits much lower DIBL, indicating superior top-gate controllability and robustness to substrate bias compared to the Si channel devices. A zero temperature coefficient point was observed in the transfer curves as temperature increases from -120 to 120°C, confirming that mobility degradation is dominantly affected by phonon scattering mechanism

    The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study

    Get PDF
    Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Conclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation. © 2014 Chang, Lee, Gu, Lee, Jin, Yeo, Seo and Jang.1
    corecore