18,221 research outputs found

    Nonequilibrium noise correlations in a point contact of helical edge states

    Full text link
    We investigate theoretically the nonequilibrium finite-frequency current noise in a four-terminal quantum point contact of interacting helical edge states at a finite bias voltage. Special focus is put on the effects of the single-particle and two-particle scattering between the two helical edge states on the fractional charge quasiparticle excitations shown in the nonequilibrium current noise spectra. Via the Keldysh perturbative approach, we find that the effects of the single-particle and the two-particle scattering processes on the current noise depend sensitively on the Luttinger liquid parameter. Moreover, the Fano factors for the auto- and cross correlations of the currents in the terminals are distinct from the ones for tunneling between the chiral edge states in the quantum Hall liquid. The current noise spectra in the single-particle-scattering-dominated and the two-particle-scattering-dominated regime are shown. Experimental implications of our results on the transport through the helical edges in two-dimensional topological insulators are discussed.Comment: 10 pages, 8 figure

    N* Masses from an Anisotropic Lattice QCD Action

    Full text link
    We report N* masses in the spin 3/2 sector from a highly-improved anisotropic action. States with both positive and negative parity are isolated via a parity projection method. The extent to which spin projection is needed is examined. The gross features of the splittings from the nucleon ground state show a trend consistent with experimental results at the quark masses explored.Comment: Lattice2001(spectrum), 3 pages, 4 figures, new interpolating fiel

    Use of graphene as protection film in biological environments

    Get PDF
    Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu(2+) ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application

    Exclusive heavy quarkonium + gamma production from e+ e- annihilation into a virtual photon

    Full text link
    We compute the cross section for exclusive production of a photon associated with a heavy quarkonium H of charge-conjugation parity C=+1 from e+ e- annihilation into a virtual photon at the center-of-momentum energy root-s=10.58 GeV. The NRQCD factorization formulas for the differential and total cross sections are obtained at leading order in the strong coupling and in the relative velocity of the heavy quark in the quarkonium rest frame. The predicted cross sections for the S-wave spin-singlet cases are about 80 fb and 50 fb for H = eta_c and eta_c(2S), respectively. Among P-wave spin-triplet charmonia, chi_{c1} has a particularly large cross section of about 14 fb. The cross sections for bottomonium states eta_b and chi_{bJ} are about 3 fb. A rough estimate of the background reveals that the signal significances for charmonium processes are sufficiently large enough to be detected with ease with the integrated luminosities available at the present B factories.Comment: 22 pages, 1 figure, version published in Phys. Rev.

    An unexpected journey of a suction catheter in a preterm neonate

    Get PDF
    Foreign bodies are extremely rare in preterm neonates. The majority are iatrogenic. We describe a neonate of 27 weeks gestation who was found to have an 18 mm long suction catheter at the right main bronchi after resuscitation in another hospital. It was first detected by chest X-ray after endotracheal intubation. Repeat X-ray revealed the catheter moved to the stomach and migrated to the lower gastrointestinal tract in a few hours. The patient was treated conservatively and the catheter was passed out on day 14. Newborn resuscitation may result in iatrogenic foreign body in neonates. Serious complications such as respiratory compromise, perforations or abscess may occur. Early referral to a specialized tertiary center with pediatric surgical service is recommended. We hope our experience demonstrated the importance of preventing iatrogenic foreign body in clinical setting. Access to endoscopic instrumentation for foreign body removal in preterm neonates should be available at all times.published_or_final_versio

    Absorption cross sections of HCl and DCl at 135-232 nanometers: implications for photodissociation on Venus

    Get PDF
    Cross sections for photoabsorption of HCl and DCl are determined in the spectral region of 135-232 nm using radiation from a synchrotron light source. At wavelengths near the onset of absorption (λ > 200 nm), cross sections of HCl are approximately 5-10 times larger than those of DCl. These data are used to calculate rates of photodissociation of HCl and DCl in the Venusian atmosphere. For the entire wavelength region measured, the rate of photodissociation of DCl is only 16% that of HCl. The difference in rates of photodissociation contributes to the exceptionally large [D]/[H] ratio of the Venusian atmosphere

    The Valence Bond Glass phase

    Full text link
    We show that a new glassy phase can emerge in presence of strong magnetic frustration and quantum fluctuations. It is a Valence Bond Glass. We study its properties solving the Hubbard-Heisenberg model on a Bethe lattice within the large NN limit introduced by Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap is observed), it is characterized by long-range critical valence bond correlations and is not related to any magnetic ordering. As a consequence it is quite different from both valence bond crystals and spin glasses

    Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    Full text link
    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here we present a comprehensive single-crystal neutron scattering study of CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.Comment: 40 pages, 9 figures, Introduction and discussion altered and expanded. Additional section and figure added to Supplementary Informatio

    Enhancement of deuterated ethane on Jupiter

    Get PDF
    We report laboratory measurements of cross sections of CH_3D and C_2H_5D in the extreme ultraviolet. The results are incorporated in a photochemical model for the deuterated hydrocarbons up to C_2 in the upper atmosphere of Jupiter, taking into account the fast reactions for exchanging H and D atoms between H_2 and CH_4, H + HD ↔ D + H_2, CH_3 + D ↔ CH_2D + H. Since there is no reliable kinetics measurement for the reaction, CH_2D + H → CH_3 + D, we use Yung et al.'s estimate for its rate constant. The strong temperature dependence for this reaction leads to large isotopic fractionation for CH_3D and C_2H_5D in the upper atmosphere of Jupiter, where their production rates depend on the abundance of deuterated methyl radical. The model predicts that the D/H ratio in deuterated ethane is about 15 times that of the bulk atmosphere. A confirmation of this result would provide a sensitive test of the photochemistry of hydrocarbons in the atmosphere of Jupiter

    Synchrotron x-ray study of lattice vibrations in CdCr2O4

    Full text link
    Using inelastic x-ray scattering we have investigated lattice vibrations in a geometric frustrated system CdCr2O4 that upon cooling undergoes a spin-Peierls phase transition at TN = 7.8 K from a cubic and paramagnetic to a tetragonal and Neel state. Phonon modes measured around Brillouin zone boundaries show energy shifts when the transition occurs. Our analysis shows that the shifting can be understood as the ordinary effects of the lowering of the crystal symmetry
    • …
    corecore