12,929 research outputs found

    Nonlinear dynamic intertwining of rods with self-contact

    Get PDF
    Twisted marine cables on the sea floor can form highly contorted three-dimensional loops that resemble tangles. Such tangles or hockles are topologically equivalent to the plectomenes that form in supercoiled DNA molecules. The dynamic evolution of these intertwined loops is studied herein using a computational rod model that explicitly accounts for dynamic self-contact. Numerical solutions are presented for an illustrative example of a long rod subjected to increasing twist at one end. The solutions reveal the dynamic evolution of the rod from an initially straight state, through a buckled state in the approximate form of a helix, through the dynamic collapse of this helix into a near-planar loop with one site of self-contact, and the subsequent intertwining of this loop with multiple sites of self-contact. This evolution is controlled by the dynamic conversion of torsional strain energy to bending strain energy or, alternatively by the dynamic conversion of twist (Tw) to writhe (Wr). KEY WORDS Rod Dynamics, Self-contact, Intertwining, DNA Supercoiling, Cable HocklingComment: 35 pages, 9 figures, submitted to Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science

    Explorations in engagement for humans and robots

    Get PDF
    This paper explores the concept of engagement, the process by which individuals in an interaction start, maintain and end their perceived connection to one another. The paper reports on one aspect of engagement among human interactors--the effect of tracking faces during an interaction. It also describes the architecture of a robot that can participate in conversational, collaborative interactions with engagement gestures. Finally, the paper reports on findings of experiments with human participants who interacted with a robot when it either performed or did not perform engagement gestures. Results of the human-robot studies indicate that people become engaged with robots: they direct their attention to the robot more often in interactions where engagement gestures are present, and they find interactions more appropriate when engagement gestures are present than when they are not.Comment: 31 pages, 5 figures, 3 table

    Vulnerability of Missouri groundwater to nitrate and pesticide contamination

    Get PDF
    May-90Includes bibliographical references (page 14)

    Momentum Flow Correlations from Event Shapes: Factorized Soft Gluons and Soft-Collinear Effective Theory

    Get PDF
    The distributions of two-jet event shapes contain information on hadronization in QCD. Near the two-jet limit, these distributions can be described by convolutions of nonperturbative event shape functions with the same distributions calculated in resummed perturbation theory. The shape functions, in turn, are determined by correlations of momentum flow operators with each other and with light-like Wilson lines, which describe the coupling of soft, wide-angle radiation to jets. We observe that leading power corrections to the mean values of event shapes are determined by the correlation of a single momentum flow operator with the relevant Wilson lines. This generalizes arguments for the universality of leading power corrections based on the low-scale behavior of the running coupling or resummation. We also show how a study of the angularity event shapes can provide information on correlations involving multiple momentum flow operators, giving a window to the system of QCD dynamics that underlies the variety of event shape functions. In deriving these results, we review, develop and compare factorization techniques in conventional perturbative QCD and soft-collinear effective theory (SCET). We give special emphasis to the elimination of double counting of momentum regions in these two formalisms.Comment: 25 pages revtex

    On the Insignificance of Photochemical Hydrocarbon Aerosols in the Atmospheres of Close-in Extrasolar Giant Planets

    Get PDF
    The close-in extrasolar giant planets (CEGPs) reside in irradiated environments much more intense than that of the giant planets in our solar system. The high UV irradiance strongly influences their photochemistry and the general current view believed that this high UV flux will greatly enhance photochemical production of hydrocarbon aerosols. In this letter, we investigate hydrocarbon aerosol formation in the atmospheres of CEGPs. We find that the abundances of hydrocarbons in the atmospheres of CEGPs are significantly less than that of Jupiter except for models in which the CH4_4 abundance is unreasonably high (as high as CO) for the hot (effective temperatures ≳1000\gtrsim 1000 K) atmospheres. Moreover, the hydrocarbons will be condensed out to form aerosols only when the temperature-pressure profiles of the species intersect with the saturation profiles--a case almost certainly not realized in the hot CEGPs atmospheres. Hence our models show that photochemical hydrocarbon aerosols are insignificant in the atmospheres of CEGPs. In contrast, Jupiter and Saturn have a much higher abundance of hydrocarbon aerosols in their atmospheres which are responsible for strong absorption shortward of 600 nm. Thus the insignificance of photochemical hydrocarbon aerosols in the atmospheres of CEGPs rules out one class of models with low albedos and featureless spectra shortward of 600 nm.Comment: ApJL accepte

    Cluster-mining: An approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

    Get PDF
    We present a novel approach for finding and evaluating structural models of small metallic nanoparticles. Rather than fitting a single model with many degrees of freedom, the approach algorithmically builds libraries of nanoparticle clusters from multiple structural motifs, and individually fits them to experimental PDFs. Each cluster-fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles

    Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor

    Full text link
    The concept of stimulated emission of bosons has played an important role in modern science and technology, and constitutes the working principle for lasers. In a stimulated emission process, an incoming photon enhances the probability that an excited atomic state will transition to a lower energy state and generate a second photon of the same energy. It is expected, but not experimentally shown, that stimulated emission contributes significantly to the zero resistance current in a superconductor by enhancing the probability that scattered Cooper pairs will return to the macroscopically occupied condensate instead of entering any other state. Here, we use time- and angle-resolved photoemission spectroscopy to study the initial rise of the non-equilibrium quasiparticle population in a Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} cuprate superconductor induced by an ultrashort laser pulse. Our finding reveals significantly slower buildup of quasiparticles in the superconducting state than in the normal state. The slower buildup only occurs when the pump pulse is too weak to deplete the superconducting condensate, and for cuts inside the Fermi arc region. We propose this is a manifestation of stimulated recombination of broken Cooper pairs, and signals an important momentum space dichotomy in the formation of Cooper pairs inside and outside the Fermi arc region.Comment: 16 pages, 4 figure

    The Spitzer c2d Survey Of Nearby Dense Cores. XI. Infrared And Submillimeter Observations Of CB130

    Get PDF
    We present new observations of the CB130 region composed of three separate cores. Using the Spitzer Space Telescope, we detected a Class 0 and a Class II object in one of these, CB130-1. The observed photometric data from Spitzer and ground-based telescopes are used to establish the physical parameters of the Class 0 object. Spectral energy distribution fitting with a radiative transfer model shows that the luminosity of the Class 0 object is 0.14-0.16 L-circle dot, which is low for a protostellar object. In order to constrain the chemical characteristics of the core having the low-luminosity object, we compare our molecular line observations to models of lines including abundance variations. We tested both ad hoc step function abundance models and a series of self-consistent chemical evolution models. In the chemical evolution models, we consider a continuous accretion model and an episodic accretion model to explore how variable luminosity affects the chemistry. The step function abundance models can match observed lines reasonably well. The best-fitting chemical evolution model requires episodic accretion and the formation of CO2 ice from CO ice during the low-luminosity periods. This process removes C from the gas phase, providing a much improved fit to the observed gas-phase molecular lines and the CO2 ice absorption feature. Based on the chemical model result, the low luminosity of CB130-1 is explained better as a quiescent stage between episodic accretion bursts rather than being at the first hydrostatic core stage.NASA 1224608, 1288664, 1407, NNX07AJ72G, 1279198, 1288806, 1342425NSF AST-0607793, AST-0708158Korea government (MEST) 2009-0062866Ministry of Education, Science and Technology 2010-0008704Astronom
    • …
    corecore