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ABSTRACT 

 

Twisted marine cables on the sea floor can form highly contorted three-dimensional loops 

that resemble tangles. Such tangles or ‘hockles’ are topologically equivalent to the 

plectomenes that form in supercoiled DNA molecules. The dynamic evolution of these 

intertwined loops is studied herein using a computational rod model that explicitly 

accounts for dynamic self-contact. Numerical solutions are presented for an illustrative 

example of a long rod subjected to increasing twist at one end. The solutions reveal the 

dynamic evolution of the rod from an initially straight state, through a buckled state in the 

approximate form of a helix, through the dynamic collapse of this helix into a near-planar 

loop with one site of self-contact, and the subsequent intertwining of this loop with 

multiple sites of self-contact. This evolution is controlled by the dynamic conversion of 

torsional strain energy to bending strain energy or, alternatively by the dynamic 

conversion of twist (Tw) to writhe (Wr).  
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1. INTRODUCTION 

 

Cables laid upon the sea floor may form loops and tangles as illustrated in Fig. 1.  The 

loops, sometimes referred to as hockles, may cause localized damage and, in the case of 

fiber optic cables, may also prevent signal transmission. These highly nonlinear 

deformations are initiated by a combination of low tension or compression (i.e. cable 

slack) and residual torsion sufficient to induce torsional buckling of the cable. Tangles 

evolve from a subsequent dynamic collapse of the buckled cable into highly nonlinear 

and intertwined configurations with self-contact. 

 

The looped and tangled forms of marine cables are topologically equivalent to the 

‘plectonemic supercoiling’ of long DNA molecules as illustrated in Fig. 2 (refer to [1, 

2]). Figure 2 depicts a DNA molecule on three different length scales as reproduced from 

[3, 4]. The smallest length scale (far left) shows a segment of the familiar ‘double-helix’ 

which has a diameter of approximately 2 nanometers (nm). One complete helical turn is 

depicted here and this extends over a length of approximately 3 nm. 

 

On an intermediate spatial scale (middle of Fig. 2), the double helix now appears as a 

long and slender DNA molecule that might be realized when considering tens to 

hundreds of helical turns (approximately tens to hundreds of nm). Two idealized ‘long-

length scale structures’ of DNA are illustrated to the far right in Fig. 2.  Here, the 

exceedingly long DNA molecule may contain thousands to millions of helical turns and 

behave as a very flexible filament with lengths ranging from micron to millimeter scales 
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or even longer.   The long-length scale curving and twisting of this flexible molecule is 

referred to as supercoiling. Two generic types of supercoils are illustrated. A plectonemic 

supercoil leads to an interwound structure where the molecule wraps upon itself with 

many sites of apparent ‘self-contact’.  By contrast, a solenoidal supercoil possesses no 

self-contact and forms a secondary helical structure resembling a coiled spring or a 

telephone cord. 

 

Often with the aid of proteins, DNA must supercoil for several key reasons. First, 

supercoiling provides an organized means to compact the very long molecule (by as 

much as 510 ) within the small confines of the cell nucleus. An unorganized compaction 

would hopelessly tangle the molecule and render it useless as the medium for storing 

genetic information. Second, supercoiling plays important roles in the transcription, 

regulation and repair of genes.  For instance, specific regulatory proteins are known to aid 

or to hinder  the formation of simple loops of DNA which in turn regulate gene activity;  

refer, for example, to Schleif [5] and Semsey et al.  [6]. 

 

Like the tangling of marine cables above, the intertwining of DNA is inherently a 

nonlinear dynamic process controlled by structural properties (e.g., elasticity) and applied 

forces (e.g., protein interactions). Rod theory provides a useful framework to explore the 

dynamics of intertwining of long filament-like structures such as cables and DNA 

molecules, as described, for example in Goyal [7].  The mechanics of intertwining 

immediately invokes formulations for self-contact in rod theory which remain a 

significant challenge as emphasized recently in [8, 9].  
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The inclusion of self-contact in equilibrium formulations of rod theory has been treated in 

[8-16]. In particular, Chouaieb et al. [8] evaluate helical equilibria where self-contact is 

accounted for by imposing bounds on helical curvature and torsion. The formation of 

self-contact in the equilibria generated from ‘closed’ or ‘circular’ rods (e.g., 

representative of DNA plasmids) is examined in Coleman et al. [12, 14-16] using 

numerical energy minimization. The mathematical existence of such solutions is deduced 

in Gonzales et al. [13] by careful formulation of the geometric excluded volume 

constraint on self-intersection. The excluded volume constraint is formulated in terms of 

rod centerline curvature in Schuricht and Mosel [10] and appended via Lagrange 

multiplier to the Euler-Lagrange equation for rod equilibrium with self-contact. The 

analysis of ‘open’ rods (e.g., rods that do not close upon themselves) requires 

consideration of two sets of boundary conditions through which loads may also be 

applied. A numerical study of the self-contacting equilibria of ‘open’ rods reveals the 

bifurcations generated by varying compression or tension and twist applied at the 

boundaries; refer to Coleman et al. [16] and Heijden et al. [11]. A recent extension in 

Heijden et al. [9] considers cases where the rod is constrained to lie on the surface of a 

cylinder. Open questions regarding the analysis of rods with self-contact are emphasized 

in Heijden et al. [9] by the lament “We are still far from understanding analytically the 

solutions of the Euler-Lagrange equations for general contact situations. Even if we limit 

ourselves to global minimizers of an appropriate energy functional, we can prove little 

about the form of solutions as soon as contact is taken into account.”  
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In contrast to the equilibrium formulations above, very few dynamical formulations of 

rod theory have been proposed that incorporate self-contact. Nevertheless, such 

formulations enable one to explore the dynamic evolution of self-contacting states and 

possible dynamic transitions between them. For instance, the slow twisting of the 

filament treated in Goyal et al. [17] ultimately induces a sudden dynamic collapse of an 

intermediate helical loop into an intertwined form.  An approximate dynamical 

formulation is also presented in Klapper [18] where inertial effects are ignored in favor of 

dissipation and stiffness effects.  

 

In this paper, we revisit the slow twisting of a filament [17] with the objective to develop 

a fundamental understanding of the dynamic evolution of its intertwined states. In 

particular, we describe how intertwined states result from a sudden collapse of helically-

looped states through a rapid conversion of torsional to bending strain energy.  The 

remainder of this paper is organized as follows. Sections 2 and 3 summarize a 

computational dynamic rod model that incorporates self-contact (refer to Goyal [7]). 

Section 4 presents an illustrative example of a non-homogeneous rod subject to pure 

torsion. Results highlight the dynamic evolution from straight to looped to intertwined 

states following a dramatic collapse to self-contact.  We close in Section 5 with 

conclusions.  

 

2. COMPUTATIONAL ROD MODEL – A SUMMARY  
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The rod segment illustrated in Fig. 3 is a thin (1-dimensional) element that may undergo 

two-axis bending and torsion in forming a three-dimensional space curve. This curve 

represents the rod centerline which, in the context of double-stranded DNA, represents 

the helical axis of the duplex.  We develop the dynamical model by employing the 

classical approximations of Kirchhoff and Clebsch [19] as detailed in Goyal [7]. A 

summary is provided here.  

2.1 Rod Kinematics, Constitutive Law, and Energy 

 

Consider the infinitesimal element of a Kirchhoff rod shown in Fig. 3. The three-

dimensional curve ),( tsR formed by the centerline is parameterized by the arc length 

coordinate s  and time t . The body-fixed frame }{ ia at each cross-section is employed to 

describe the orientation of the cross-section with respect to the inertial frame }{ ie . The 

angular velocity ),( tsω  of the cross-section is defined as the rotation of the body-fixed 

frame }{ ia  per unit time relative to the inertial frame }{ ie  and satisfies 
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where the subscript specifies the reference frame relative to which the derivative has been 

taken. We also define a ‘curvature and twist vector’ ),( tsκ  as the rotation of the body-
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In a stress-free state, the rod conforms to its natural geometry defined by )(0 sκ . The 

difference { }0( , ) ( )s t sκ κ−  results in an internal moment ),( tsq  at each cross-section of 

the rod. The relationship between the change in curvature/twist  { }0( , ) ( )s t sκ κ−  and the 

restoring moment ),( tsq  is governed by a constitutive law for bending and torsion. While 

many generalizations of the constitutive law are discussed in Goyal [7], in this study we 

employ the linear elastic law  

 ))(),()((),( 0 stssBtsq κκ −=  (3)

 

where )(sB  is a positive definite stiffness tensor that is a prescribed function of position s. 

As demonstrated in carefully controlled, laboratory-scale tests by Heijden et al. [11], the 

linear elastic material law assumed above is capable of capturing the bifurcation 

behaviors responsible for the looping and intertwining of thin rods. While these 

experiments were conducted using one type of material (nickel titanium alloy nitinol), 

other applications may require the specification of nonlinear material laws. Such 

generalizations can be readily accounted for in the formulation discussed in Goyal [7].  

The resulting strain energy density is therefore 

 
))(),()(())(),((
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e κκκκ −−= . (4)
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We further employ a diagonalized form of )(sB  by choosing }{ ia  to coincide with the 

‘principal torsion-flexure axes’ of the cross-section (refer to Love [19]). In particular, 1a  

and 2a  are in the plane of the cross-section and are aligned with the principal flexure 

axes while 3a  is normal to the cross-section and coincides with the tangent t̂ .  The 

resulting diagonal form of the stiffness tensor )(sB  is 
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where )(1 sA  and )(2 sA  are bending stiffnesses about the principal flexure axes along 1a  

and 2a  respectively, and )(sC  is the torsional stiffness about principal torsional or 

‘tangent’ axis 3a . Furthermore, in the results that follow, the rod is assumed to be 

isotropic1 but non-homogeneous (i.e. )()()( 21 sAsAsA == ). The resultant of the stress-

distribution at any cross-section not only results in a net internal moment ),( tsq , but also 

net tensile and shear forces ),( tsf  which remain unknowns in this formulation. 

 

The kinetic energy of the rod depends upon the centerline velocity ),( tsv and the cross-

section angular velocity ),( tsω . Let )(sm denote the mass of the rod per unit arc length 

and )(sI  denote the tensor of principal mass moments of inertia per unit arc length. Then 

the rod kinetic energy density is 

                                                 
1 The rod is assumed to have circular cross section in this study with axi-symmetric bending stiffness. 
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We choose the vectors ),( tsv , ),( tsω , ),( tsκ  and ),( tsf as four unknown field variables 

in the formulation below. The kinematical quantities ),( tsκ , ),( tsω and ),( tsv can be 

readily integrated to compute the rod configuration ),( tsR  and the cross-section 

orientation as given by )},({ tsai ; refer to Fig. 3 and to Goyal [7]. 

 

Depending upon the application, the rod may also interact with numerous external field 

forces including those produced by gravity, a surrounding fluid medium, electrostatic 

forces, contact with other bodies or with the rod itself, , etc. The resultant of these 

external forces and moments per unit length is denoted by ,...),( tsF and ,...),( tsQ , 

respectively. In general, these quantities may be functionally-dependent on the 

kinematical quantities ),( tsκ , ),( tsω and ),( tsv  in addition to the rod 

configuration ),( tsR . 

 

We next specify the four field equations required to solve for the four vector 

unknowns },,,{ fv κω . In the field equations, we employ partial derivatives of all 

quantities relative to the body-fixed frame }{ ia and recall the following relations to the 

partial derivatives relative to the inertial frame for a vector quantity υ  (refer to 

Greenwood [20]):  
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For notational convenience, henceforth, we drop the subscript for the body-fixed frame. 

 

2.2 Equations of Motion 

 

The balance law for linear momentum of the infinitesimal element shown in Fig. 3 

becomes 
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and that for angular momentum becomes 
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Here, ),(ˆ tst  is the unit tangent vector along the centerline (directed towards increasing 

arc length s ) and the internal moment ))(),()((),( 0 stssBtsq κκ −= upon substitution of 

the constitutive law Eq. (3). 

 

2.3 Constraints and Summary 

 

The above formulation is completed with the addition of two vector constraints. The first 

enforces inextensibility and unshearability which take the form 
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tv

s
v ˆ×=×+
∂
∂ ωκ . (10)

 

The second follows from continuity requirements for ω  and κ in the form of the 

compatibility constraint 

 
ts ∂
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=×+

∂
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Detailed derivations of these constraints are provided in Goyal [7].  

 

The four vector equations Eq. (8-11) in the four vector unknowns },,,{ fv κω  result in a 

12th order system of nonlinear partial differential equations in space and time. They are 

compactly written as  
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where },,,{),( fvtsY κω= and the operators M , K  and F/  are described in Goyal et al. 

[7, 21]. These equations are not integrable in general and thus we pursue a numerical 

solution as detailed in Goyal et al. [7, 21]. In particular, we discretize the equations above 

by employing a finite difference algorithm using the generalized-α method (refer to 

Chung and Hulbert [22]) in both space and time. Doing so yields a method that is 

unconditionally stable and second-order accurate. A single numerical parameter can be 

varied to control maximum numerical dissipation. The difference equations so obtained 

are implicit and their solution must satisfy the rod boundary conditions. The boundary 
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conditions are satisfied using a shooting method in conjunction with Newton-Raphson 

iteration. In addition, this formulation also incorporates the forces generated by self-

contact which, being central to the objective of this paper, we describe in some detail 

below. 

 

3. NUMERICAL FORMULATION OF DYNAMIC SELF-CONTACT  

 

A numerical formulation of self-contact begins with first determining the likely sites 

where self-contact exists or will soon occur. An efficient search strategy for these sites 

[7] is as follows. Consider two remote segments of the discretized rod that are 

approaching contact as shown in Fig. 4. The lower segment contains three spatial grid 

points denoted as 1, 2 and 3 while the upper segment contains one grid point denoted as 

4. Grid point 4 is likely to interact with the grid point 2 as the two segments approach 

each other. We introduce a screening aperture of angle θ formed by a pair of conical 

surfaces centered at each grid point (illustrated at grid point 2 in Fig. 4). We use this 

aperture to efficiently search for only those points that may potentially interact through 

self-contact. This aperture specifically excludes non-physical ‘contact’ forces between 

nearby grid points on the same segment (such as 1, 2 and 3 in lower segment).  The 

aperture reduces to the plane of the rod cross-section as θ → 0°, and it expands to the 

entire space as θ →180°. 

 

During simulation, the separation d between each pair of grid points is measured. A 

repulsive (contact) force is introduced between these grid points only if two 
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conditions are met: 1) the distance d is less than a specified tolerance, and 2) the two grid 

points lie within each other’s screening aperture. This search strategy ensures that the 

contact forces are approximately normal to the rod surfaces and also allows for sliding 

contact. The interaction force can in general be a function of d and d&  (the approach 

speed) and it is included in the balance of linear momentum Eq. (8) through the 

distributed force term F. Example interaction laws that can be employed include 

(attractive-repulsive) Lennard-Jones type (refer to, for example Schlick et al. [23]), 

(screened repulsion) Debye-Huckle type (refer to, for example Schlick et al. [24]), 

general inverse-power laws (refer to, for example Klapper [18]), and idealized contact 

laws for two solids (refer to, for example Heijden et al. [11] and Coleman et al. [12]). In 

the specific case of DNA, one might introduce a fictitious charged and cylindrical surface 

that circumscribes the molecule to capture the repulsive effects of the negatively charged 

backbone. 

 

4. RESULTS  

 

The computational model above is used to explore the dynamic evolution of an 

intertwined state induced by slowly increasing the twist applied to one end of an elastic 

rod.  The numerical solutions reveal three major behaviors: 1) the torsional buckling of 

an initially straight rod into the approximate shape of a helix, 2) the dramatic collapse of 

this helix to a near-planar loop with self-contact at a single point, and 3) the subsequent 

intertwining of the loop with multiple sites of self-contact. 
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4.1 Illustrative Example 

 

Figure 5 defines an illustrative example which consists of an initially straight, linearly 

elastic rod subjected to monotonically increasing twist at the right end at s = 0.  This end 

cannot move and it is otherwise constrained in rotation (no rotation about the principal 

axes a1 and a2). The left end at s = L is fully restrained in rotation and cannot translate in 

the transverse (a1-a2) plane. This end, however, may translate along the 2e  axis. 

Constraining the ends in rotation conserves the number of twisting turns added to the rod 

which is equivalent to conserving the topological invariant called the ‘linking number’ 

defined in Section 4.4. By contrast, having any rotational freedom at any end might allow 

the rod to swivel at that end releasing the linking number and resulting in distinctly 

different behavior. An insightful discussion of these and other boundary conditions is 

provided in [11].  

 

The material and geometric parameters that define the example are listed in Table 1 

together with basic discretization parameters used in the numerical algorithm; refer to 

Goyal et al. [7, 21] for a complete description of the numerical parameters. The example 

rod has a circular cross-section which varies along its length. In particular, the central 

portion of the rod (middle 25%) is necked down to a smaller diameter that is 10% smaller 

than the end regions. We have chosen this non-homogenous rod to illustrate both the 
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generality of the computational model as well as to promote torsional buckling and 

subsequent intertwining within the (‘softer’) central portion.  The small 10% reduction in 

the diameter produces a significant (≈ 35%) reduction in torsional stiffness ( 3)( GJsC = ) 

and bending stiffness ( 2,1)( EJsA = ) in the central portion. 

 

As a representative law for self-contact, we choose for this example the following form 

for the repulsive force 
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=
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k
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with example parameters: k1 = 10-7m4/s2, k2 = 3, k3 = 10-6 and k4 = 1. This contact law is 

one of many possible that capture both nonlinear repulsion and dissipation. This example 

contact law retains an inverse power dependence on the separation parameter (d-0.5D) 

common to (the repulsive part of) the Lennard-Jones and Debye-Huckle formulations as 

well as a similar inverse power law employed in [18].  The results that follow are rather 

insensitive to changes in the specific parameter values selected above. However, the 

stability of the numerical algorithm is sensitive to the functional form of the contact law 

for the following reason. As will be seen in the examples, the first approach to self-

contact follows from a dramatic dynamic collapse to contact and thus the contact force 

can build very rapidly. The addition of dissipation in (13), which does not alter the 

steady-state prediction of the looped and intertwined states, helps stabilize the numerical 

algorithm by limiting the otherwise destabilizing growth of the contact force. 
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In addition to the contact law above, the only other body force considered is a dissipative 

force. As one example, we introduce the viscous drag imparted by a surrounding fluid 

environment in the form of the standard Morison drag law [25]. This distributed drag, 

which manifests itself in the balance of linear momentum Eq. (8) through the distributed 

force term F , is computed as [21]: 

 ( ) ( ){ }ttvtvCtvttvCDF tnfdrag
ˆˆˆˆˆˆ

2
1

⋅⋅+×××−= πρ , (14)

 

Here, nC  is the normal (form) drag coefficient, tC  is the tangential (skin friction) drag 

coefficient, and fρ  is fluid density. Example values of these parameters are reported in 

Table 1. 

 

Any form of fluid and material dissipation would tend to slow the dynamic collapse of 

the helically deformed rod into a loop with self-contact. Therefore, any quantitative 

prediction of the time scale of this collapse (e.g., for a cable in the ocean environment, or 

DNA in a biological buffer) would first require an accurate characterization of the 

relevant dissipation mechanisms.  In our example, we chose a Morison drag law to 

demonstrate how one may incorporate realistic hydrodynamic drag in the context of an 

oceanographic cable.  

 

4.2 Evolution of Self-Contact and Intertwining  

 

By increasing the rotation (twist) slowly at the right end, the internal torque eventually 

reaches the bifurcation condition associated with the classical torsional buckling of a 
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straight rod (refer to Zachmann [26]).  This rotation is generated by prescribing the 

angular velocity component ω3 at the right end as shown in Fig. 6 (not to scale). In 

addition, the left end is allowed to translate freely during the first 30 seconds and is then 

held fixed to control what would otherwise be an exceedingly rapid collapse to self-

contact as described in the following. 

 
As the right end is initially twisted by a modest amount, the rod remains straight. There is 

an abrupt change however when the twist reaches the bifurcation value associated with  

the Zachmann buckling condition [26] and the straight (trivial) configuration becomes 

unstable. This occurs at approximately 16 seconds in this example. The computational 

model captures this initial instability as well as the subsequent nonlinear motion that 

leads to loop formation and ultimately to intertwining.  

 

Figure 7 illustrates four representative snap-shots during the dynamic evolution of an 

intertwined state. The geometry just after initial buckling is approximately helical as can 

be observed in the uppermost snap-shot (20 seconds). Notice that the rod centerline 

appears to make a single helical turn as predicted from the fundamental buckling mode of 

the linearized theory (refer to Zachmann [26]). The superimposed black stripe records the 

computed twist distribution of the rod for this state which exhibits nearly four complete 

turns; refer to the discussion of twist and major topological transitions below.  As this 

twist is increased, the rod continuously deforms into a larger diameter helical loop and 

the left end slides substantially to the right as shown by the second image (25 seconds).  
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Upon greater twist, the left end continues to slide towards the right end and the helical 

loop continues to rotate out of the plane of this figure. Eventually the loop undergoes a 

loss of stability followed by a rapid dynamic collapses into self-contact in forming a 

nearly planar loop. The collapsed loop is shown by the third image (which occurs at 

approximately 29 seconds).  

 

The dynamic collapse can be anticipated from stability analyses of the equilibrium forms 

of a rod under similar loading conditions; refer to Lu and Perkins [27] and studies cited 

therein. The snap-shot at 25 seconds shows the three-dimensional shape of the rod just 

prior to dynamic collapse. Here, the apex of the loop has rotated approximately 90° about 

the vertical (e1) axis so that the tangent at the apex is now orthogonal to the loading (e2) 

axis. This was the noted secondary bifurcation condition in Lu and Perkins [27] at which 

the three-dimensional equilibrium form loses stability.  

 

The collapsed loop, however, is very sensitive to the increasing twist and rapidly 

continues to rotate about the vertical (e1) axis leading to intertwined forms with multiple 

sites of self-contact. A snapshot of a fully intertwined loop is illustrated at the bottom of 

Fig. 7 (32 seconds).  The strain energy density (color scale in Fig. 7) reveals that the 

strain energy becomes highly localized to the apex of the intertwined loop where the 

curvature is greatest. The decomposition of this strain energy into bending and torsional 

components provides significant insight into the dynamic evolution of an intertwined 

state as discussed next. 
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4.3 Energetic Transitions 

 

Figure 8 summarizes the energetics of this process by illustrating how the bending and 

torsional strain energy components contribute to the total strain energy. Starting at time 

zero, the initially straight rod remains straight and the applied twist simply increases the 

torsional strain energy. This elementary, pure-twisting of the straight rod ceases at 

approximately 18 seconds with the first bifurcation due to torsional buckling (refer to 

Zachmann [26]). The torsional strain energy achieves its maximum at this state and 

immediately thereafter the rod buckles into a three-dimensional form resembling a 

shallow helix (a). This transition is accompanied by a conversion of torsional to bending 

strain energy. This conversion is dynamic and markedly increases as the rod is twisted 

further while developing a distinctive loop (b). The apex of this loop rotates further out of 

plane during this stage. Just prior to 29 seconds the apex becomes nearly orthogonal to 

the loading axis (original axis of the straight rod) which marks the secondary bifurcation 

[27] that generates an extremely fast dynamic collapse to self-contact. The resulting loop 

with self-contact is nearly planar (c).  During this secondary bifurcation, the rod loses 

both torsional and bending strain energies until self-contact and, thereafter intertwining 

begins.  As intertwining advances (d), the torsional strain energy continues to decrease 

while the bending strain energy increases once more. In addition, the bending strain 

energy becomes localized to the apex of the loop due to the significant and increasing 

curvature developed there; refer also to snapshot at 32 seconds in Fig. 7.  In the case of 

DNA forming plectonemes, such localized strain energy might possibly be the forerunner 
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of the nonlinear ‘kinking’ of the molecule as proposed recently in Wiggins et al. [28].  

Figure 8 also illustrates the total strain energy and the work done by twisting the right 

boundary. The energy difference between the work done and the total strain energy 

derives from the significant kinetic energy during this process as well as the dissipation 

developed from the included fluid drag. 

 

 We emphasize that the results above are insensitive to any reasonable changes in the 

parameters in the contact law (13). Consider that the maximum dynamic contact force 

generated in this example is of the order of 10-3 N and that the corresponding contact 

energy density remains an order of magnitude smaller than the rod strain energy 

density eS . Thus, when integrated over the length of the rod, the contribution of the 

contact energy remains negligible relative to the total rod strain energy. That said, for 

very long (hence flexible) DNA filaments with relatively large sub-domains in close 

proximity, the energy of self-interaction (electrostatic potential) may indeed grow to a 

considerable portion of the structural deformation energy of the molecule. In these 

instances, the equilibrium conformation of intertwined DNA would be materially affected 

by the electrostatic interaction. 

4.4 Topological Transitions 

 

It is interesting to observe that the topological changes for the example rod above are also 

exhibited by DNA during supercoiling. As discussed in Calladine et al. [1], the above 

conversion of torsional strain energy to bending strain energy for DNA is more 

frequently described topologically as the conversion of twist to writhe. We explore this 
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conversion in the above example after briefly reviewing the definitions for twist and 

writhe. 

 

Twist (Tw) is a kinematical quantity representing the total number of twisted turns along 

the rod centerline as computed from 

 ( )∫ ⋅=
CL

dstTw
0

ˆ
2
1 κ
π

 (15)

 

Writhe (Wr) is defined as the average number of cross-overs of the rod centerline when 

observed over all possible views of the rod (refer to Calladine et al. [1]). For our initially 

straight configuration, Wr = 0. At the first self-contact shown by the snapshot at 29 

seconds in Fig. 7, Wr = 1. The writhe then continues to increase to Wr = 2 for the 

intertwined state at 32 seconds in Fig. 7. The writhe is purely a function of the space 

curve defining the rod centerline and it may also be positive or negative depending on 

whether the crossing is right-handed or left-handed (refer to Calladine et al. [1]). In our 

illustrative example, the sum Tw + Wr equals the number of rotations of the right 

boundary and this sum is called the Linking number Lk2.  Refer to Fuller [29] and White 

[30] for the proof of conservation of the Linking number (Lk). 

 

In our example, the initial twisting phase rapidly increases Lk from 0 to approximately 4, 

all in the form of twist, prior to the first bifurcation (torsional buckling) as illustrated in 

Fig. 9. An additional increase in Lk (end rotation) of less than ½ (turn) produces all of the 

                                                 
2 This is not true, in general, for other boundary conditions that allow rotations about the other axes (i.e., 
cases where ω1,2 ≠ 0 at the boundaries). 
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sudden transitions noted above. Following the first bifurcation, Wr increases from 0 to 1 

at self-contact (29 seconds) and Tw correspondingly reduces so that the sum Wr + Tw 

remains equal to Lk. Following the first self-contact, the loop continues to rotate as it 

intertwines. In doing so, every half rotation of the loop establishes an additional contact 

site thereby increasing Wr by 1 and reducing Tw by 1. At 32 seconds, Wr is slightly 

larger than 2. Thus, we observe two crossovers in any three orthogonal views of the snap-

shot at 32 seconds shown in Fig. 7. There is a compensatory loss in Tw as shown in Fig. 

9. 

 

It should also be noted if self-contact is ignored, as has often been done in some prior 

studies of the looping of rods, the numerical solution for the rod may allow it to 

artificially ‘cut through itself’ leading to entirely different and non-physical results.  

Following each ‘cut’, both Wr and Lk are reduced discontinuously by 2. Examples of this 

readily follow from the present computational formulation by simply eliminating the 

contact force. However, doing so leads to non-physical discontinuous changes in Wr and 

Lk following artificial ‘cuts’ through the rod. Thus, modeling self-contact is 

fundamentally necessary when one endeavors to understand the pathway(s) leading to the 

intertwined loops. 

 

 
5. CONCLUSIONS 

 

This paper summarizes a computational rod model that captures the dynamical evolution 

of intertwined loops in rods under torsion. A major feature is the explicit formulation of 
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dynamic self-contact. An illustrative example is selected which reveals a fundamental 

understanding of how loops first form, then collapse, and then intertwine. This 

knowledge may also promote an understanding of how long cables form ‘hockles’ and 

how DNA molecules form plectonemic supercoils. 

 

Numerical simulations reveal that an originally straight rod undergoes two bifurcations in 

succession as twist is added.  The first bifurcation is elementary and occurs at the 

(Zachmann) buckling condition where the trivial equilibrium becomes unstable and the 

rod buckles into the approximate shape of a shallow helix.  Upon increasing twist, this 

helix grows in amplitude to form a distinctive loop. In doing so, the apex of this loop 

continues to rotate towards the out-of-plane direction.  When the apex ultimately 

becomes orthogonal to the loading axis (axis of the original straight rod), the loop 

experiences a secondary bifurcation and a sudden dynamic collapse into a near-planar 

loop with self-contact.  As twist is again added, the near-planar loop rotates upon itself 

becoming intertwined with multiple sites of self-contact. The energetics leading to the 

intertwined form confirm the large exchange of torsional strain energy for bending strain 

energy which becomes increasingly localized to the apex of the loop. These transitions 

parallel the dynamic conversion of twist (Tw) to writhe (Wr) during this process.  
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quantity units (SI) value/ formula 
Young’s Modulus, E Pa 1.25×107 
Shear Modulus, G Pa 5.0×106 
Diameter, D m See Fig. 5 
Length, cL  m 1.0 
Rod Density, cρ  Kg/m3 1500 
Fluid Density, fρ  Kg/m3 1000 
Normal Drag Coefficient nC  - 0.1 
Tangential Drag Coefficient tC  - 0.01 
Temporal Step, ∆t s 0.1 
Spatial Step, ∆s m 0.001 

Cross-section Area m2 
4

2DAc
π

=  

Mass/ length Kg/m cc Am ρ=  

Area Moments of Inertia (bending) m4 
16

2

2,1
DA

J c=  

Area Moment of Inertia (torsion) m4 
8

2

3
DA

J c=  

Mass Moment of Inertia/ length Kg-m JI cρ=

 

Table 1:  Example rod properties and simulation parameters. 
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Figure 1: Low tension cable forming loops and (intertwined) tangles on the sea floor. 
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Figure 2: DNA shown on three length scales. Smallest scale (left) shows a single helical 

repeat of the double-helix structure (sugar-phosphate chains and base-pairs). Intermediate 

scale (middle) suggests how many consecutive helical repeats form the very long and 

slender DNA molecule. Largest scale (right) shows how the molecule ultimately curves 

and twists in forming supercoils (plectonemic or solenoidal). (Courtesy: Branden and 

Tooze [3] and Lehninger et al. [4]). 
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Figure 3:  Free body diagram of an infinitesimal element of a Kirchhoff rod. 
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Figure 4: Two remote segments of a rod approaching contact. A screening aperture is 

defined by a pair of conical surfaces constructed at each grid point. This aperture leads to 

an efficient numerical search for regions of self-contact. 
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Figure 5: A non-homogenous rod subject to slowly increasing twist created by rotating 

the right end about the 2e  (loading) axis The right end is otherwise restrained in rotation 

and translation. The left end is fully restrained in rotation and translation except that it is 

free to slide along the loading axis. 
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Figure 6: Prescribed angular (twist) velocity at the right end. (Note: not to scale). 
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Figure 7:  Snap-shots at selected times during the transition from a buckled helical form 

(Time=20 sec.) to an intertwined form (Time=32 sec.). Black stripe superimposed on the 

first form illustrates the twist distribution. Color indicates strain energy density. 
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Figure 8:  The bending, torsional, and total strain energy during the dynamic evolution of 

an intertwined state. The work done by the applied twist is also reported. 
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Figure 9: Conversion of twist (Tw) to writhe (Wr) during loop formation and 

intertwining. The linking number Lk = Tw + Wr is equivalent to the number of turns 

prescribed at the right end of the rod in this example. 

 
 


