4,592 research outputs found

    Designing biomaterials using mussel adhesive chemistry

    Get PDF
    Marine mussels secrete adhesive proteins that enable them to anchor to surfaces under water. We are exploiting chemistry utilized by mussels to design bioadhesives for tissue repair and wound healing, smart biomaterials for on-demand antipathogenic applications, and smart adhesives that can be turned on and off with externally applied stimuli.https://digitalcommons.mtu.edu/techtalks/1047/thumbnail.jp

    Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core

    Get PDF
    We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH_(3)0H are combined with continuum observations from λ = 1.3 mm to λ = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10^5 cm^(-3) and an estimated total mass of approximately 70 M_⊙. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO^(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 L_⊙), implying that it is a low-mass (0.5-3 M_⊙) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales ≤ 1 yr while the central component is relatively constant over ~14 yr. The nature of a newly detected compact emission region, S68 N, is less certain due to the absence of firm continuum detections; based on its low luminosity (<5 L_⊙) and strong molecular emission, S68 N may be prestellar subcondensation of gas and dust

    Incorporation of anionic monomer to tune the reversible catechol-boronate complex for pH responsive, reversible adhesion

    Get PDF
    Up to 30 mol% of acrylic acid (AAc) was incorporated into a pH responsive smart adhesive consisting of dopamine methacrylamide (DMA) and 3-acrylamido phenylboronic acid (APBA). FTIR spectroscopy and rheometry confirmed that the incorporation of AAc shifted the pH of catechol-boronate complexation to a more basic pH. Correspondingly, adhesive formulations with elevated AAc contents demonstrated strong adhesion to quartz substrate at a neutral to mildly basic pH (pH 7.5-8.5) based on Johnson-Kendall-Roberts (JKR) contact mechanics test. When pH was further increased to pH 9.0, there was a drastic reduction in the measured work of adhesion (18 and 7 fold reduction compared to values measured at pH 7.5 and 8.5, respectively) due to the formation of catechol-boronate complex. The complex remained reversible and the interfacial binding property of the adhesive was successfully tuned with changing pH in successive contact cycles. However, an acidic pH (pH 3.0) was required to break the catechol-boronate complex to recover the elevated adhesive property. Adding AAc enables the smart adhesive to function in physiological or marine pH ranges

    Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis.

    Get PDF
    Cytochrome P450 (CYP) monooxygenases epoxidize the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid into novel epoxydocosapentaenoic acids (EDPs) that have multiple biological actions. The present study determined the ability of the most abundant EDP regioisomer, 19,20-EDP to reduce kidney injury in an experimental unilateral ureteral obstruction (UUO) renal fibrosis mouse model. Mice with UUO developed kidney tubular injury and interstitial fibrosis. UUO mice had elevated kidney hydroxyproline content and five-times greater collagen positive fibrotic area than sham control mice. 19,20-EDP treatment to UUO mice for 10 days reduced renal fibrosis with a 40%-50% reduction in collagen positive area and hydroxyproline content. There was a six-fold increase in kidney α-smooth muscle actin (α-SMA) positive area in UUO mice compared to sham control mice, and 19,20-EDP treatment to UUO mice decreased α-SMA immunopositive area by 60%. UUO mice demonstrated renal epithelial-to-mesenchymal transition (EMT) with reduced expression of the epithelial marker E-cadherin and elevated expression of multiple mesenchymal markers (FSP-1, α-SMA, and desmin). Interestingly, 19,20-EDP treatment reduced renal EMT in UUO by decreasing mesenchymal and increasing epithelial marker expression. Overall, we demonstrate that a novel omega-3 fatty acid metabolite 19,20-EDP, prevents UUO-induced renal fibrosis in mice by reducing renal EMT

    Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21

    Full text link
    Published in final edited form as: Brain Struct Funct. 2019 January ; 224(1): 351–362. doi:10.1007/s00429-018-1777-z.Optical coherence tomography is an optical technique that uses backscattered light to highlight intrinsic structure, and when applied to brain tissue, it can resolve cortical layers and fiber bundles. Optical coherence microscopy (OCM) is higher resolution (i.e., 1.25 µm) and is capable of detecting neurons. In a previous report, we compared the correspondence of OCM acquired imaging of neurons with traditional Nissl stained histology in entorhinal cortex layer II. In the current method-oriented study, we aimed to determine the colocalization success rate between OCM and Nissl in other brain cortical areas with different laminar arrangements and cell packing density. We focused on two additional cortical areas: medial prefrontal, pre-genual Brodmann area (BA) 32 and lateral temporal BA 21. We present the data as colocalization matrices and as quantitative percentages. The overall average colocalization in OCM compared to Nissl was 67% for BA 32 (47% for Nissl colocalization) and 60% for BA 21 (52% for Nissl colocalization), but with a large variability across cases and layers. One source of variability and confounds could be ascribed to an obscuring effect from large and dense intracortical fiber bundles. Other technical challenges, including obstacles inherent to human brain tissue, are discussed. Despite limitations, OCM is a promising semi-high throughput tool for demonstrating detail at the neuronal level, and, with further development, has distinct potential for the automatic acquisition of large databases as are required for the human brain.Accepted manuscrip

    Fibrin Gel as an Injectable Biodegradable Scaffold and Cell Carrier for Tissue Engineering

    Get PDF
    Due to the increasing needs for organ transplantation and a universal shortage of donated tissues, tissue engineering emerges as a useful approach to engineer functional tissues. Although different synthetic materials have been used to fabricate tissue engineering scaffolds, they have many limitations such as the biocompatibility concerns, the inability to support cell attachment, and undesirable degradation rate. Fibrin gel, a biopolymeric material, provides numerous advantages over synthetic materials in functioning as a tissue engineering scaffold and a cell carrier. Fibrin gel exhibits excellent biocompatibility, promotes cell attachment, and can degrade in a controllable manner. Additionally, fibrin gel mimics the natural blood-clotting process and self-assembles into a polymer network. The ability for fibrin to cure in situ has been exploited to develop injectable scaffolds for the repair of damaged cardiac and cartilage tissues. Additionally, fibrin gel has been utilized as a cell carrier to protect cells from the forces during the application and cell delivery processes while enhancing the cell viability and tissue regeneration. Here, we review the recent advancement in developing fibrin-based biomaterials for the development of injectable tissue engineering scaffold and cell carriers

    Catechol-Based Antimicrobial Polymers

    Get PDF
    Catechol is a key constituent in mussel adhesive proteins and is responsible for strong adhesive property and crosslinking formation. Plant-based polyphenols are also capable of chemical interactions similar to those of catechol and are inherently antimicrobial. This review reports a series of catechol-based antimicrobial polymers classified according to their antimicrobial mechanisms. Catechol is utilized as a surface anchoring group for adhering monomers and polymers of known antimicrobial properties onto various types of surfaces. Additionally, catechol\u27s ability to form strong complexes with metal ions and nanoparticles was utilized to sequester these antimicrobial agents into coatings and polymer matrices. During catechol oxidation, reactive oxygen species (ROS) is generated as a byproduct, and the use of the generated ROS for antimicrobial applications was also introduced. Finally, polymers that utilized the innate antimicrobial property of halogenated catechols and polyphenols were reviewed

    African American men with low-grade prostate cancer have increased disease recurrence after prostatectomy compared with Caucasian men.

    Get PDF
    PURPOSE: To explore whether disparities in outcomes exist between African American (AA) and Caucasian (CS) men with low-grade prostate cancer and similar cancer of the prostate risk assessment-postsurgery (CAPRA-S) features following prostatectomy (RP). METHODS: The overall cohort consisted of 1,265 men (234 AA and 1,031 CS) who met the National comprehensive cancer network criteria for low- to intermediate-risk prostate cancer and underwent RP between 1990 and 2012. We first evaluated whether clinical factors were associated with adverse pathologic outcomes and freedom from biochemical failure (FFbF) using the entire cohort. Next, we studied a subset of 705 men (112 AA and 593 CS) who had pathologic Gleason score≤6 (low-grade disease). Using this cohort, we determined whether race affected FFbF in men with RP-proven low-grade disease and similar CAPRA-S scores. RESULTS: With a median follow-up time of 27 months, the overall 7-year FFbF rate was 86% vs. 79% in CS and AA men, respectively (P = 0.035). There was no significant difference in one or more adverse pathologic features between CS vs. AA men (27% vs. 31%; P = 0.35) or CAPRA-S score (P = 0.28). In the subset analysis of patients with low-grade disease, AA race was associated with worse FFbF outcomes (P = 0.002). Furthermore, AA race was a significant predictor of FFbF in men with low-grade disease (hazard ratio = 2.01, 95% CI: 1.08-3.72; P = 0.029). CONCLUSIONS: AA race is a predictor of worse FFbF outcomes in men with low-grade disease after RP. These results suggest that a subset of AA men with low-grade disease may benefit from more aggressive treatment
    • …
    corecore