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Abstract: Catechol is a key constituent in mussel adhesive proteins and is responsible for strong
adhesive property and crosslinking formation. Plant-based polyphenols are also capable of chemical
interactions similar to those of catechol and are inherently antimicrobial. This review reports a series
of catechol-based antimicrobial polymers classified according to their antimicrobial mechanisms.
Catechol is utilized as a surface anchoring group for adhering monomers and polymers of known
antimicrobial properties onto various types of surfaces. Additionally, catechol’s ability to form strong
complexes with metal ions and nanoparticles was utilized to sequester these antimicrobial agents
into coatings and polymer matrices. During catechol oxidation, reactive oxygen species (ROS) is
generated as a byproduct, and the use of the generated ROS for antimicrobial applications was also
introduced. Finally, polymers that utilized the innate antimicrobial property of halogenated catechols
and polyphenols were reviewed.

Keywords: catechol; polymer; antimicrobial; reactive oxygen species

1. Introduction

Infection associated with microorganisms such as bacteria, viruses, fungi, or parasites
results in more death worldwide when compared with other causes [1,2]. To date, there are
many different strategies to prevent bacterial growth and infection. The most widely used
antimicrobial strategy is the use of small antimicrobial molecules that are broadly applied
such as antibiotics, antiseptics, disinfectants, and preservatives. However, overreliance on
the use of these compounds has resulted in the formation of drug-resistant microorganisms
due to their ability to rapidly mutate [3,4]. For instance, Pseudomonas aeruginosa and
Staphylococcus aureus are resistant to many antibiotics [5].

Challenged by the ongoing threats from antibiotic-resistant microorganisms, polymers
with intrinsic antimicrobial properties have received increased interest in both the academia
and the industry [6,7]. Antimicrobial polymers are either functionalized with antimicrobial
agents [8] or possess innate antimicrobial properties [9–11]. There are several categories
of antimicrobial polymers, which include cationic polymers [12,13], polymers that mimic
natural peptides [14–17], halogenated polymers [15,18], and polymers containing metal
ions or nanoparticles (NPs) [19]. Antimicrobial polymers can slow or inhibit the growth
of drug-resistant strains [9,10] and present high antimicrobial efficacy due to the various
antimicrobial modes and polymeric structures [4]. Additionally, these antimicrobial poly-
mers are promising materials with less toxicity to the human body, long-lasting activity,
and higher environmental safety than the traditional disinfectants [20,21].

Catechol and polyphenols are widely found in nature. Marine mussels secrete adhe-
sive proteins that consist of a large abundance of 3,4-dihydroxyphenyl-L-alanine (DOPA),
an amino acid with a catechol side chain [22–24]. The presence of catechol contributes
to both the interfacial binding and curing of these adhesive proteins [25]. Catechol can
participate in a wide range of reversible interactions (e.g., hydrogen bonding, π–π electron
interaction, cation–π interaction, coordination with metal oxide surfaces and metal ions),
and covalent bond formation (Figure 1) [23]. Incorporating catechol into the polymers
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imparts these materials with the chemical reactivity of catechol for designing adhesives, an-
tifouling coatings, drug carriers, and antimicrobial polymers [26–30]. Similarly, plant-based
polyphenols such as tannic acid (TA) and catechin exhibit intermolecular interactions and
crosslinking capability resembling those of catechol [31–33]. While most scientists utilize
these compounds predominantly as a surface anchoring group for promoting interfacial
bonding, recent research indicated that catechol generates reactive oxygen species (ROS) as
a byproduct during catechol oxidation [34]. ROS has been demonstrated to function as an
effective, broad-spectrum biocide in many industrial and biomedical applications [35,36].
Additionally, catechol chemically modified with a halogen [37] and polyphenols such as
TA, curcumin, catechin, and procyanidin [38–40] are innately antimicrobial.
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Figure 1. Possible interactions and reactions of catechol, semiquinone, and ortho-quinones. Noncovalent interactions include
hydrogen bonding, π–π electron interaction, coordination with metal oxide surface, cation–π interaction, and coordination
with metal ions. Covalent interactions include catechol–boronate complexation, polymerization, and irreversible bonding to
organic substrates or molecules bearing, -thiol, -amine, and -imidazole functional groups.

This review focuses on catechol-based antimicrobial polymers. First, the use of cat-
echol moieties as a surface anchoring group to immobilize antimicrobial polymers is
reviewed. Then, the use of catechol-modified polymers to sequester metal ions or NPs
is introduced. Next, the ability for catechol to generate antimicrobial levels of ROS is
introduced. Finally, the antimicrobial activity of halogenated catechol and polyphenols
is reviewed.

2. Catechol-Modified Polymers with Innate Antimicrobial Properties

Catechol can be incorporated into polymer chains by copolymerizing catechol-containing
monomers with plant-based antimicrobial monomers or cationic monomers to prepare
robust and biocompatible antimicrobial polymers and coatings [26,41]. Alternatively,
catechol can be tethered to cationic polymers with known antimicrobial properties to
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synthesize antimicrobial polymers. In this strategy, catechol serves as the surface anchoring
group to adhere these antimicrobial polymers onto various types of surfaces.

Monomers with cardanol side chains, 2-hydroxy-3-cardanylpropyl methacrylate
(HCPM), were copolymerized with dopamine methacrylamide (DMA) to prepare an an-
timicrobial polymer, P(DMA-co-HCPM) (Figure 2a) [40]. Cardanol can be obtained from
cashew nut shell liquid and has previously demonstrated antimicrobial property [42,43].
The P(DMA-co-HCPM)-coated polysulfone membranes exhibited excellent antibacterial
activities against Escherichia coli and S. aureus, demonstrating a higher than 90% killing
efficiency. Similarly, borneol is a natural plant-based antibiotic [44], and borneol-containing
polymers demonstrated excellent antibacterial activities [45]. However, these polymers
do not have a surface anchoring moiety to form stable coatings [46]. Block copolymers of
poly(DMA) and poly (borneolacrylate) (P(DMA-b-BA)) (Figure 2b) demonstrated remark-
able and long-lasting antibacterial properties against E. coli and S. aureus [47]. P(DMA-b-BA)
coatings showed robust adhesion and bactericidal properties on different surfaces such as
silicon, silica, stainless steel (SS), cotton fabric, commercial gauze, and alumina.
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HCPM), (b) P(DMA-b-BA), and (c) P(MEO2MA-co-OEGMA-co-DAA)-b-PMETA-b-P(MEO2MA-co-OEGMA-co-DAA).

Cationic polymers can kill pathogens by attacking their negatively charged cell walls
and exhibit excellent antimicrobial properties [12]. The cationic monomer 2-(methacryloyloxy)-
ethyl] trimethylammonium iodide (META) was copolymerized with polyethylene glycol
(PEG) and catechol-based monomers to create a triblock copolymer poly{[2-(2-methoxyethoxy)
ethyl methacrylate]-co-[oligo(ethylene glycol) methacrylate]-co-(N-3,4-dihydroxyphenethyl
acrylamide)}-b-poly{[2-(methacryloyloxy)ethyl] trimethylammonium iodide}-b-poly{[2-
(2-methoxyethoxy)ethyl methacrylate]-co-[oligo(ethylene glycol) methacrylate]-co-(N-3,4-
dihydroxyphenethyl acrylamide)} (P(MEO2MA-co-OEGMA-co-DAA)-b-PMETA-b-P(MEO2MA-
co-OEGMA-co-DAA)) (Figure 2c) [48]. This triblock copolymer can self-assemble to form
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a self-healing hydrogel, while effectively suppressing the growth of E. coli owing to the
presence of cationic quaternary ammonium salt. Additionally, the incorporation of antifoul-
ing PEG prevented nonspecific cell attachment. Similarly, catechol was copolymerized
with 2-(4-methylthiazol-5-yl) ethyl methacrylate (MTA) [49] and 2-(dimethylamino)ethyl
methacrylate (DMAEMA) [50] to create cationic antimicrobial polymers.

Qiu et al. [51] showed that through the co-deposition of catechol and cationic polyethylen-
imine (PEI), N-alkylated PEI was grafted onto polypropylene microfiltration membranes
(PPMs) at pH 8.5. Catechols are oxidized into quinone states in a weak alkaline condition,
subsequently reacting with amino groups of PEI via Michael addition or Schiff base reac-
tion. The modified membrane surface demonstrated 95% antibacterial efficiency against
S. aureus and weak adherence of bacterial cells after 24 h of incubation.

3. Catechol-Based Polymers in Combination with Metal Ions and Nanoparticles

Metal ions such as silver, copper, zinc, gold, and titanium can kill bacteria by binding
to cell membrane proteins, thus inhibiting vital enzymatic activities for cell growth and
causing metabolic disruption that leads to cell death [52,53]. Catechol can form reversible
complexes with these metal ions in a pH-dependent manner [54,55]. Additionally, catechol
can reduce soluble metal ions to form NPs, thus functionalizing the NPs on the surface of the
catechol-containing polymer [56–58]. This section reviews catechol-containing polymers
that contained various metal ions and NPs. In these polymer systems, catechol functions
as an adhesive moiety for surface bonding as well as sequestering the antimicrobial metal
ions and NPs.

3.1. Silver Ions (Ag+) and Silver Nanoparticles (AgNPs)

Silver and its compounds are the most used metal ions in creating antimicrobial
polymers [5]. When silver is ionized in solution, the bactericidal active Ag+ binds to the
proteins of cell walls and form complexes with the DNA and RNA of bacteria, leading
to broad-spectrum antimicrobial activity [59,60]. Ag+ and AgNPs can be incorporated
into copolymers, hydrogels, or coatings to create antimicrobial polymeric materials [30,61].
Catechol-containing polymers have been demonstrated to reduce water-soluble Ag+ to
form AgNPs (Figure 3), effectively encapsulating the AgNPs into the polymer matrices.
In this approach, catechol not only serves as the reducing agent but also stabilizes the in situ
formed AgNPs. Huang et al. [62] prepared catechol-modified chitosan (Figure 4a), which
reduced Ag+ in the form of silver nitrate (AgNO3) in solution to form an antimicrobial chi-
tosan/AgNP composite. This composite exhibited remarkable antimicrobial performance
at a very low dosage, with a minimum bactericidal concentration of 14µg·mL−1 against
E. coli and 25µg·mL−1 against S. aureus. In another approach, O-carboxymethyl chitosan
(CMC) was directly reacted with catechol and deposited onto polyethersulfone (PES) mem-
branes to construct a coating loaded with AgNPs [63]. Carboxyl and amino groups in
CMC captured Ag+, which was reduced to AgNPs by catechol moieties. Then PEG-based
polyurethane (PU) was added to confer antifouling properties to the membrane. The
chitosan/AgNP and CMC-Ag-PU composites can be deposited onto titanium and PES sur-
faces, respectively, by utilizing the strong adhesive and redox property of catechol [63,64].
Both surfaces exhibited strong antibacterial and antifouling properties against E. coli and
S. aureus. Similarly, a copolymer with a cationic methacrylate bearing a quaternary am-
monium group, 2-methacryloxyethyltrimethylammonium chloride (DMAEMA+), and a
methacrylamide bearing DOPA group (poly(mDOPA)-co-poly(DMAEMA+)) (Figure 4b)
was applied to fabricate an antimicrobial coating for SS [65]. This cationic polymer in
combination with a polyanion, poly(styrene sulfonate), was deposited on the SS surface
by electrostatic interaction. Both DOPA and poly(DMAEMA+) formed and stabilized
bactericidal AgNPs. This coating showed excellent killing capability against E. coli. The
antimicrobial Ag+ can be reloaded to replenish the antimicrobial coating. This approach
utilized a one-pot preparation, which is more convenient than the layer by layer (LbL)
deposition in which 45–60 bilayers are needed to have a comparable antimicrobial activity [66].
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In addition to the catechol-based copolymers, diverse antimicrobial catechol-based
hydrogels containing AgNPs were also reported. Le Thi et al. [67] described catechol-
functionalized gelatin hydrogels loaded with AgNPs for enhanced antimicrobial activities.
This composite hydrogel sustainably released Ag+ over a period of 14 days, which demon-
strated the ability to inhibit the growth of both E. coli and S. aureus bacteria. Similarly,
GhavamiNejad et al. [68] embedded AgNPs into a zwitterionic hydrogel copolymerized
with DMA. This composite hydrogel exhibited strong antibacterial properties against Gram-
negative (E. coli) and Gram-positive (S. aureus and P. aeruginosa) bacteria. Other monomers
such as non-ionic, cationic, and anionic monomers can be used instead of zwitterionic
monomers to fabricate AgNP-containing nanocomposite hydrogels.

There are limitations for using AgNPs in biomedical applications due to its potential
for causing mammalian cell apoptosis and death [69,70]. Dopamine-conjugated polymers
can be used to reduce the toxicity of AgNPs toward mammalian cells [71]. In this one-step
approach, antimicrobial and biocompatible catechol-containing silver-carbon nanotube
composites (AgNP-CNT) were produced. A catechol-containing heparin-mimetic polymer
was used to convert Ag+ to AgNPs and anchor them onto the surface of the CNT composites.
The composite coatings demonstrated a great antibacterial activity against E. coli and
S. aureus with the killing efficiency of 77.3% and 81.2%, respectively. Interestingly, the
shielding effects of the catecholic polymer coating and the bioactivity of the heparin-
like polymer resulted in the improvement of the cytocompatibility of the antimicrobial
nanocomposites and inhibited the direct cellular exposure to AgNPs.

Gan et al. [72] developed a plant-based hydrogel containing Ag-lignin NPs, pectin
(P), and poly acrylic acid (PAA). Lignin possesses the reductive phenolic hydroxyl and
methoxy groups, which can reduce Ag+ to AgNPs. The Ag-lignin NPs-P-PAA hydrogel
displayed long-term adhesion, high toughness, and strong antimicrobial properties. The
increased adhesive property was due to the continuous generation of the catechol from
of lignin through a balanced redox reaction inside the hydrogel network. This hydrogel
effectively inhibited E. coli (97%) and Staphylococcus epidermidis (98%). The antibacterial
activities of NPs-P-PPA in vivo were confirmed in a rabbit model following the injection of
E. coli suspension (1 mL, 105 cells mL−1).

3.2. Other Metal Ions and Nanoparticles

Iron ion (Fe3+) is widely found in mussel byssus along with catechol-containing pro-
teins [73]. The catechol–Fe3+ interaction has been reported as a tool for developing an
antimicrobial polymer film on a solid surface [74]. Alginate-functionalized with catechol
(Alg-C) was deposited onto polydopamine (PDA)-coated substrate and Fe3+ was intro-
duced as the crosslinker to construct a multilayered film (Figure 5). PDA was first described
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by the Messersmith lab [75] and is a facile method to form multifunctional coatings con-
sisting of polymerized form of dopamine. The Alg-C/Fe3+ multilayered films prevented
bacterial adhesion and films with a thickness greater than 10 nm demonstrated the ability
to inhibit bacterial growth for over 24 h.
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Siderophores are iron-chelating compounds, secreted by cells to gather iron from
external sources [76]. Artificial catechol-containing siderophores conjugated with antimi-
crobial drugs displayed potent antimicrobial activity against multidrug-resistant bacteria.
These catecholate siderophores form complex with Fe3+ and enter the microorganism via
the corresponding siderophore-uptake pathway to deliver the antimicrobial drug to the
bacterial cell. These drug conjugates exhibited strong antibacterial activities against Gram-
negative bacteria such as P. aeruginosa, which is highly resistant to most of the existing
antibiotics [77]. Some conjugates exhibited a minimum inhibitory concentration lower than
0.25 µg·mL−1 when treated against aminopenicillin-resistant strains [78].

Molybdenum trioxide (MoO3) NPs also demonstrated strong antimicrobial activ-
ity [56,57]. However, the application of MoO3 NPs is limited by their poor solubil-
ity in water. Catechol-containing polymers such as poly(dopamine methacrylamide-
co-methoxyethyl acrylate), poly(dopamine methacrylamide), poly(ethyl methacrylate-co-
dopamine methacrylamide), and poly (hydroxyethyl methacrylate-co-dopamine methacry-
lamide) were used to secure MoO3 NPs on surfaces [58]. These nanocomposite coatings
not only killed E. coli and Bacillus subtilis after only 1 h of incubation, but they were also
antimicrobial against the more antibiotic-resistant Gram-negative (P. aeruginosa) and Gram-
positive (Streptococcus pyogenes and S. epidermidis) bacteria strains after 2 h of incubation.
These coatings also demonstrated the ability to inhibit the growth of biofilms.

4. ROS-Releasing Catechol-Based Polymers

ROS are highly reactive molecules and free radicals derived from molecular oxy-
gen [79]. ROS can degrade organic compounds [80–82], initiate free radical polymeriza-
tion [83], and kill cells [84,85]. ROS kills cells by attacking and destroying proteins, lipids,
and DNA, which makes ROS a potential solution for antimicrobial applications [86]. Cate-
chol generates various types of ROS such as hydrogen peroxide (H2O2), superoxide (O2

−),
singlet oxygen (1O2), and hydroxyl radical (•OH) during oxidizing conditions such as au-
toxidation [34], chemical-induced oxidation [87], and metal ion-mediated oxidation [87,88].



Molecules 2021, 26, 559 7 of 17

H2O2 is generated as a byproduct during the autoxidation of catechol at a neutral
to basic pH (Figure 6a) [34]. Catechol-modified microgels generated 1–5 mM of H2O2
over a period of 4 days as catechol autoxidized through simple hydration [28]. The H2O2
generated from these microgels completely prevented colony formation of both Gram-
negative (E. coli) and Gram-positive (S. epidermidis) bacteria within 24 h and inactivated
the infectivity of both enveloped bovine viral diarrhea virus (BVDV) and non-enveloped
porcine parvovirus (PPV). By controlling the oxidation state of catechol, these microgels
can be repeatedly activated (pH 7.4) and deactivated (pH 3.5) to generate antipathogenic
levels of H2O2. These microgels do not contain the reactive ROS, and H2O2 is generated by
converting molecular oxygen in the aqueous solution through catechol oxidation. This sim-
ple activation process enables the catechol-modified microgel to function as a lightweight
and portable source of disinfectant.

H2O2 is not a very potent disinfectant and bacteria such as Staphylococcus secrete
antioxidant enzymes such as catalase that decomposes H2O2 [89]. To further enhance
the antimicrobial property of catechol-modified microgels, these microgels were further
chemically modified with hematin (HEM), a porphyrin derivative that contains an Fe3+ ion
(Figure 6b) [90]. Fe3+ can convert the generated H2O2 to •OH via a Fenton-like reaction
process. •OH is also a highly reactive and strong oxidant with remarkable antimicrobial
properties [91]. These microgels demonstrated faster and more effective antibacterial
activities against both Gram-negative (E. coli) and Gram-positive (S. epiermidis) bacteria
at concentrations of 106 and 107 CFU·mL−1, when compared to microgels that generated
only H2O2 [90]. These microgels also reduced 99.997% and 99.97% infectivity of BVDV
and PPV, respectively. However, •OH alone did not provide sufficient antimicrobial
property due to its short half-life (10−9 s) [92]. To overcome this issue, the microgels were
further modified with positively charged [2-(methacryloyloxy)ethyl] trimethylammonium
chloride (METAC), which enhances the antibacterial performance of the microgel through
electrostatic interactions between the positively charged microgels and the negatively
charged pathogens [90].

Molecules 2021, 26, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 6. Schematics showing the mechanism of catechol oxidation and H2O2 generation (a) and 

H2O2 decomposition to generate •OH in the presence hematin (HEM) (b). Reproduced with per-

mission from reference [90] copyright 2020 American Chemical Society. 

Catechol generates O2− in metal ion-mediated oxidation, which can be further con-

verted into 1O2 by the metal ion [88,93]. Both O2− and 1O2 are more reactive when compared 

to H2O2. When catechol-modified microgels were incubated in solutions containing up to 

40 mM of various metal ions (e.g., Fe2+, Ni2+, Cu2+, Co2+) more than 85% of these metal ions 

were removed from the solution [88]. Most interestingly, these metal ions were repur-

posed to generate ROS for dye degradation. Similarly, 1O2 was produced by oxidizing 

catechol-modified microgel with iron magnetic nanoparticles (FeMNPs) instead of metal 

ions (Figure 7). Unlike autoxidation of catechol that occurs only at a basic pH, the ROS 

generation occurred over a wide range of pH (pH 3 to 9). The generated 1O2 killed 99% of 

E. coli after 24 h of incubation, degraded organic dyes, and removed the antibiotic ciprof-

loxacin from the solution. This simple mixture of catechol-modified microgel and 

FeMNPs can potentially be utilized as a portable source for on-demand generation of ROS 

for bioremediation and water purification. 

 

Figure 7. Multifunctional catechol-based microgel. Reprinted with permission from reference [88], copyright 2020 Amer-

ican Chemical Society. 

Figure 6. Schematics showing the mechanism of catechol oxidation and H2O2 generation (a) and
H2O2 decomposition to generate •OH in the presence hematin (HEM) (b). Reproduced with permis-
sion from reference [90] copyright 2020 American Chemical Society.

Catechol generates O2
− in metal ion-mediated oxidation, which can be further con-

verted into 1O2 by the metal ion [88,93]. Both O2
− and 1O2 are more reactive when

compared to H2O2. When catechol-modified microgels were incubated in solutions con-
taining up to 40 mM of various metal ions (e.g., Fe2+, Ni2+, Cu2+, Co2+) more than 85% of
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these metal ions were removed from the solution [88]. Most interestingly, these metal ions
were repurposed to generate ROS for dye degradation. Similarly, 1O2 was produced by
oxidizing catechol-modified microgel with iron magnetic nanoparticles (FeMNPs) instead
of metal ions (Figure 7). Unlike autoxidation of catechol that occurs only at a basic pH, the
ROS generation occurred over a wide range of pH (pH 3 to 9). The generated 1O2 killed
99% of E. coli after 24 h of incubation, degraded organic dyes, and removed the antibiotic
ciprofloxacin from the solution. This simple mixture of catechol-modified microgel and
FeMNPs can potentially be utilized as a portable source for on-demand generation of ROS
for bioremediation and water purification.
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Catechols in PDA coating also demonstrated the ability to generate H2O2 [29]. How-
ever, to generate antimicrobial levels of H2O2, a two-step coating approach combined with
gentle shaking was necessary (Figure 8). In the first coating step, a thick primer layer of
PDA was coated onto the surface of polypropylene (PP) mesh utilizing an elevated level
of dopamine (20 mg·mL−1). In the second step, a significantly lower concentration of
dopamine (2 mg·mL−1) was applied for the formation and deposition of macroaggregates
of PDA NPs formed in the solution. Shaking the solution during coating promoted gas
exchange to increase molecular oxygen content in the reaction solution, which promoted
catechol oxidation in creating a thicker PDA film. When the PDA-coated PP mesh was
hydrated in a solution at pH 7.4, 200 µM of H2O2 was generated for over 48 h. The re-
leased H2O2 completely killed E. coli and reduced the log reduction value of S. epidermidis
by 98.9% within 24 h. Furthermore, PDA was coated on to SS to reduce adhesion of
Psychrobacter cryohalolentis [94].
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Figure 8. Schematic illustration of (a) catechol-based polydopamine (PDA) coating prepared by
two-steps with gentle shaking and (b) the activation of the PDA-coated mesh to generate H2O2 by
simply hydrating the mesh in the PBS with at pH 7.4. Reprinted with the permission of reference [29],
copyright 2019 Kord Forooshani et al.

5. Innate Antimicrobial Property of Halogenated Catechol and Polyphenols
5.1. Antimicrobial Halogenated Catechol

Halogenated phenols, such as triclosan and hexachlorophenol, can rupture and kill
bacteria by deforming their cell walls, inhibiting their growth, and causing cytological
damage [95]. Triclosan binds tightly to enoyl-acyl carrier protein reductase in complex
with oxidized nicotinamide adenine dinucleotide (FabI/NAD+) to inhibit the synthesis of
bacterial fatty acids and achieve a broad-spectrum antimicrobial effect [96,97]. The antimi-
crobial halogenated catechol also exists in nature. DOPA with a chloride-functionalized
catechol side chain (Cl-DOPA) was extracted from a marine polychaete, Phragmatopoma
californica [98]. PEG hydrogel chemically crosslinked using Cl-functionalized dopamine
prevented E. coli adhesion rate by 20% [99].

Recently, our group prepared a series of DMA derivatives (chlorodopamine methacry-
lamide (DMA-Cl), bromodopamine methacrylamide (DMA-Br), and iododopamine methacry-
lamide (DMA-I)) modified with electron-withdrawing halogen substituents at the 6-position
(Figure 9) [37]. These halogenated DMAs were incorporated into hydrogels, copolymers,
and coatings through free-radical polymerization. The killing efficiency of halogenated
DMA-containing polymers exhibited a 7 log reduction against E. coli and S. aureus. Most
notably, DMA-Cl containing hydrogels effectively killed five multidrug-resistant (MDR)
bacteria (methicillin-resistant S. aureus, vancomycin-resistant enterococci, multi-antibiotics-
resistant P. aeruginosa, multi-antibiotics-resistant Acinetobacter baumannii, and carbapenem-
resistant Klebsiella pneumoniae). All MDR bacteria were completely eradicated after 24 h
of incubation. Additionally, these hydrogels also demonstrated the ability to kill bacteria
in a biofilm while exhibiting low cytotoxicity. Interestingly, when the catechol side chain
was protected with methoxy groups and rendered non-adhesive, the methoxy-protected
catechol lost its antimicrobial activity. This indicated that the ability for catechol to adhere
to the bacteria is critical for contact killing, which resulted in membrane disruption. Other
halogenated catechol-based polymers such as chlorinated PDA (Cl-PDA) demonstrated a
5 log reduction in bacterial population against both E. coli and S. aureus [100].
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Figure 9. (a) Chemical structures of halogenated catechol, which was incorporated into copolymers,
coatings, and hydrogels with antimicrobial property. (b) FE-SEM images of (b1) S. aureus grown after
24 h. (b2 and b3) S. aureus treated with DMA-Cl containing hydrogel for 24 h with the inset image
showing magnified image of ruptured S. aureus and bacterial debris (white arrows). (b4) E. coli culture
for 24 h. (b5 and b6) E. coli treated with DMA-Cl containing hydrogel for 24 h with the inset image
showing magnified image of ruptured E. coli and bacterial debris (white circles). (c) Fluorescence
images of LIVE/DEAD bacterial staining assay of S. aureus (c1 and c3) treated with catechol-free
hydrogel and (c5 and c7) DMA-Cl-containing hydrogel after 0 and 24 h. Fluorescence images of
LIVE/DEAD bacterial staining assay of E. coli (c2 and c4) treated with catechol-free hydrogel and
(c6 and c8) DMA-Cl-containing hydrogel after 0 and 24 h. Live and dead cells are stained green and
red, respectively. Reprinted from [37], copyright 2021, with permission from Elsevier.

5.2. Antimicrobial Polyphenols

Polyphenols such as TA, curcumin, catechin, and procyanidin (Figure 10) exhibit
innate antimicrobial properties due to the abundant phenolic hydroxyl groups, which
can denature bacterial proteins and damage bacterial cell membranes [38–40]. TA has
demonstrated antimicrobial effect on S. aureus [101]. The antibacterial activity of TA largely
relies on the content of phenolic hydroxyl groups [102]. Sahiner et al. [103] prepared a
crosslinked poly(TA) hydrogel. Under acidic conditions (pH 5.4), p(TA) hydrolyzed into
gallic acid, the minimum inhibition concentration (MIC) value of p(TA) against S. aureus
was 40 µL·mL−1. Under alkaline conditions (pH 9.0), p(TA) hydrolyzed and released TA,
the MIC value of p(TA) against S. aureus was 10 µL·mL−1. Li and coworkers [104] prepared
hemostatic microparticles by crosslinking TA, carboxymethyl chitosan, hyaluronic acid,
and starch. When this composite material was added to the wound site, it promoted
rapid hemostasis, and the released TA exhibited antimicrobial effects against both E. coli
and S. aureus. A series of UV-curable antibacterial resins were synthesized by modifying
TA with different amounts of glycidyl methacrylate (GMA) [105]. This resin achieved
diameters of zone of inhibition as high as 19 mm against E. coli and S. aureus. However,
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with an elevated amount of GMA used to crosslink the resin, the resin lost antimicrobial
property, indicating that the phenolic hydroxyl groups in TA played an important role in
antibacterial activity [106].
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Figure 10. Chemical structures of antimicrobial polyphenols such as (a) TA, (b) curcumin, (c) catechin, and (d) procyanidin.

Other natural polyphenols such as tea catechins, curcumin from Curcuma longa, and
procyanidins from grape seeds exhibit anti-tumor, anti-inflammatory, antioxidant, anti-
obesity, and antimicrobial properties [107–112]. For example, theaflavin digallate (TFDG),
a poly-catechin, can directly inhibit cytoplasmic membrane proteins to achieve an an-
timicrobial effect [113]. The membrane glucose transporters’ activity decreased 40% after
treatment with 62.5 mg·L−1 TFDG. Similarly, nanofibrous membranes constructed from
curcumin-containing polymer demonstrated to be effective antimicrobial barriers with an-
timicrobial activity that lasted over 7 days [111]. Procyanidins can serve as an antimicrobial
drug [114]. Procyanidins were loaded into sugarcane bagasse hydrogel and exhibited an-
tibacterial effect against S. aureus. Finally, procyanidin-treated crepe de Chine silk showed
excellent flame-retardant and antimicrobial properties [115]. The treated silk maintains
more than 80% antimicrobial activity after repeated washing for more than 20 times.

6. Summary and Future Outlooks

The use of antimicrobial polymers has been extended to many different fields due to
their improved quality and safety in comparison to traditionally used biocides. This article
reviewed different strategies to create antimicrobial polymers utilizing catechol chemistry.
The adhesive property of catechol was utilized to anchor antimicrobial polymers to impart
surfaces with antimicrobial property. Additionally, the ability for catechol to bind to metal
ions and reduce metal nanoparticles was utilized to sequester these antimicrobial ions
and particles into coatings and polymer matrices. ROS is a broad-spectrum disinfectant
and is generated as a byproduct during catechol oxidation. The process of inducing in
situ catechol oxidation is a recent strategy utilized to create portable biomaterials with the
ability for on-demand generation of ROS for antimicrobial application. Finally, halogenated
catechols and natural polyphenols exhibit innate antimicrobial property.

While catechol and catechol-containing biomaterials have proven to be biocompatible
in culture and in preclinical studies [116–119], cytotoxic compounds are incorporated
in designing antimicrobial polymers. Ag+ can interfere with mammalian cell function
through a competitive protein complexation and silver-containing polymers can damage
mammalian cells [69,70]. Antimicrobial metal oxides such as zinc and titanium with
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improved biocompatibility can potentially be used instead of the cytotoxic Ag+ [120–122].
Similarly, halogenated catechol such as chlorocatechols had been demonstrated to be toxic
to zebra fish, a model organism [123]. Additionally, iodine-modified catechol was also
demonstrated to be cytotoxic when directly contacting fibroblasts [37]. To improve the
biocompatibility of halogenated catechol, a temporary and pH-responsive protecting group
such as boronic acid could potentially be incorporated [124,125]. The utilization of ROS is
an attractive antimicrobial strategy due to its short half-life and biocompatible degradation
products (i.e., water and oxygen) [35]. ROS is also a natural disinfectant generated as part of
normal wound healing response [79]. However, elevated levels of ROS can destroy healthy
tissues, retard wound healing, and induce tumor formation [126,127]. Silica nanoparticles
that catalyze the degradation of ROS could potentially be incorporated to modulate the
concentration of the released ROS [128].

One of the often-overlooked issues in designing catechol-based coating is the long-
term stability of the surface-bound catechol. There have only been limited studies that
characterized the performance of these coatings in the presence of biomolecules or cells,
or in vivo for 7 days or longer [129,130]. Catechol forms both reversible and irreversible
interfacial bonds depending on the surface type [22–24], and it is potentially feasible for
catechol to detach from inorganic surfaces over time. Recently, in situ electrochemical
oxidation was found to deactivate and detach catechol-containing adhesive that was
adhered to a titanium surface [131]. As such, externally applied force and oxidative stress
can potentially lead to catechol delamination. While synthetic mussel adhesive mimics
predominantly utilize catechol for adhesion, mussel adhesive proteins utilize a combination
of different amino acid residues (i.e., charged, hydrophobic, etc.) and intermolecular
chemical interactions between multiple proteins to create adhesive plaques that bind
tightly to the substrate surface [23]. Incorporation of diverse interfacial chemistries may
be necessary to strengthen coating stability. Additionally, there is a potentially need for
strategies that preserve the reduced and adhesive form of catechol so that the delaminated
catechol may reattach. The incorporation of an antioxidant thiol functional group [132],
acidic side chain for buffering local solution pH [133], and temporary protecting groups
such as boronic acid [134] can be used to prevent catechol oxidation.
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