56,216 research outputs found

    Segmentation and texture analysis with multimodel inference for the automatic detection of exudates in early diabetic retinopathy

    Get PDF
    published_or_final_versio

    Ka-band MMIC microstrip array for high rate communications

    Get PDF
    In a recent technology assessment of alternative communication systems for the space exploration initiative (SEI), Ka-band (18 to 40 GHz) communication technology was identified to meet the mission requirements of telecommunication, navigation, and information management. Compared to the lower frequency bands, Ka-band antennas offer higher gain and broader bandwidths; thus, they are more suitable for high data rate communications. Over the years, NASA has played an important role in monolithic microwave integrated circuit (MMIC) phased array technology development, and currently, has an ongoing contract with Texas Instrument (TI) to develop a modular Ka-band MMIC microstrip subarray (NAS3-25718). The TI contract emphasizes MMIC integration technology development and stipulates using existing MMIC devices to minimize the array development cost. The objective of this paper is to present array component technologies and integration techniques used to construct the subarray modules

    Artificial molecular quantum rings: Spin density functional theory calculations

    Full text link
    The ground states of artificial molecules made of two vertically coupled quantum rings are studied within the spin density functional theory for systems containing up to 13 electrons. Quantum tunneling effects on the electronic structure of the coupled rings are analyzed. For small ring radius, our results recover those of coupled quantum dots. For intermediate and large ring radius, new phases are found showing the formation of new diatomic artificial ring molecules. Our results also show that the tunneling induced phase transitions in the coupled rings occur at much smaller tunneling energy as compared to those for coupled quantum dot systems.Comment: 10 pages, 6 figure

    Neural locus of color afterimages.

    Get PDF
    After fixating on a colored pattern, observers see a similar pattern in complementary colors when the stimulus is removed. Afterimages were important in disproving the theory that visual rays emanate from the eye[1], in demonstrating inter-ocular interactions[2], and in revealing the independence of binocular-vision from eye-movements[3]. Afterimages also prove invaluable in exploring selective attention[4], filling-in[5], and consciousness[6]. Proposed physiological mechanisms for color afterimages range from bleaching of cone photo-pigments[7] to cortical adaptation[4–6, 8, 9], but direct neural measurements have not been reported. We introduce a time-varying method for evoking after-images, which provides precise measurements of adaptation and a direct link between visual percepts and neural responses[10]. We then use in vivo electrophysiological recordings to show that all three classes of primate retinal ganglion cells exhibit subtractive adaptation to prolonged stimuli, with much slower time-constants than those expected of photoreceptors. At the cessation of the stimulus, ganglion cells generate rebound responses that can provide afterimage signals for later neurons. Our results indicate that afterimage signals are generated in the retina, but may be modified like other retinal signals by cortical processes[4–6], so that evidence presented for cortical generation of color afterimages[8, 9] is explainable by spatio-temporal factors that apply to all signals

    Probing the N=14N = 14 subshell closure: gg factor of the 26^{26}Mg(21+^+_1) state

    Full text link
    The first-excited state gg~factor of 26^{26}Mg has been measured relative to the gg factor of the 24^{24}Mg(21+2^+_1) state using the high-velocity transient-field technique, giving g=+0.86±0.10g=+0.86\pm0.10. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the sdsd-shell model using the USDB interaction. The newly measured gg factor, along with E(21+)E(2^+_1) and B(E2)B(E2) systematics, signal the closure of the νd5/2\nu d_{5/2} subshell at N=14N=14. The possibility that precise gg-factor measurements may indicate the onset of neutron pfpf admixtures in first-excited state even-even magnesium isotopes below 32^{32}Mg is discussed and the importance of precise excited-state gg-factor measurements on sdsd~shell nuclei with N≠ZN\neq Z to test shell-model wavefunctions is noted.Comment: 8 pages, 5 figure

    High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12_{12}O19_{19}

    Full text link
    High quality single crystals of BaFe12_{12}O19_{19} were grown using the floating zone technique in flowing oxygen pressurized to 100 atm. Single crystal neutron diffraction was used to determine the nuclear and magnetic structure of BaFe12_{12}O19_{19} at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe3+^{3+} ions at the bipyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of the specific heat shows no anomaly associated with long range polar ordering in the temperature range from 1.90-300 K. The inverse dielectric permittivity, 1/ε1/\varepsilon, along the c-axis shows a T2T^2 temperature dependence between 10 K and 20 K, with a significantly reduced temperature dependence displayed below 10 K. Moreover, as the sample is cooled below 1.4 K there is an anomalous sharp upturn in 1/ε1/\varepsilon. These features resemble those of classic quantum paraelectrics such as SrTiO3_3. The presence of the upturn in 1/ε1/\varepsilon indicates that BaFe12_{12}O19_{19} is a critical quantum paraelectric system with Fe3+^{3+} ions involved in both magnetic and electric dipole formation.Comment: 9 pages, 9 figures, submitted to APL Material

    Spatially embedded random networks

    No full text
    Many real-world networks analyzed in modern network theory have a natural spatial element; e.g., the Internet, social networks, neural networks, etc. Yet, aside from a comparatively small number of somewhat specialized and domain-specific studies, the spatial element is mostly ignored and, in particular, its relation to network structure disregarded. In this paper we introduce a model framework to analyze the mediation of network structure by spatial embedding; specifically, we model connectivity as dependent on the distance between network nodes. Our spatially embedded random networks construction is not primarily intended as an accurate model of any specific class of real-world networks, but rather to gain intuition for the effects of spatial embedding on network structure; nevertheless we are able to demonstrate, in a quite general setting, some constraints of spatial embedding on connectivity such as the effects of spatial symmetry, conditions for scale free degree distributions and the existence of small-world spatial networks. We also derive some standard structural statistics for spatially embedded networks and illustrate the application of our model framework with concrete examples

    Superstring-Inspired E_6 Unification, Shadow Theta-Particles and Cosmology

    Full text link
    We construct a new cosmological model considering the superstring-inspired E_6 unification in the 4-dimensional space at the early stage of the Universe. We develop a concept of parallel existence in Nature of the ordinary and shadow worlds with different cosmological evolutions.Comment: 7 page

    Modified embedded-atom method interatomic potentials for the Mg-Al alloy system

    Full text link
    We developed new modified embedded-atom method (MEAM) interatomic potentials for the Mg-Al alloy system using a first-principles method based on density functional theory (DFT). The materials parameters, such as the cohesive energy, equilibrium atomic volume, and bulk modulus, were used to determine the MEAM parameters. Face-centered cubic, hexagonal close packed, and cubic rock salt structures were used as the reference structures for Al, Mg, and MgAl, respectively. The applicability of the new MEAM potentials to atomistic simulations for investigating Mg-Al alloys was demonstrated by performing simulations on Mg and Al atoms in a variety of geometries. The new MEAM potentials were used to calculate the adsorption energies of Al and Mg atoms on Al (111) and Mg (0001) surfaces. The formation energies and geometries of various point defects, such as vacancies, interstitial defects and substitutional defects, were also calculated. We found that the new MEAM potentials give a better overall agreement with DFT calculations and experiments when compared against the previously published MEAM potentials.Comment: Fixed a referenc
    • …
    corecore