18,075 research outputs found

    Advancing 21st Century Competencies in Hong Kong

    Get PDF
    This paper is one of five case studies that accompany the Asia Society reportpublished_or_final_versio

    On Vague Computers

    Full text link
    Vagueness is something everyone is familiar with. In fact, most people think that vagueness is closely related to language and exists only there. However, vagueness is a property of the physical world. Quantum computers harness superposition and entanglement to perform their computational tasks. Both superposition and entanglement are vague processes. Thus quantum computers, which process exact data without "exploiting" vagueness, are actually vague computers

    Josephson effects in MgB2 meta masked ion damage junctions

    Get PDF
    Ion beam damage combined with nanoscale focused ion beam direct milling was used to create manufacturable SNS type Josephson junctions in 100 nm thick MgB2_{2} with TC_{C} of 38 K. The junctions show non-hysteretic current - voltage characteristics between 36 and 4.2 K. Experimental evidence for the dc and ac Josephson effects in MgB2_{2} metal masked ion damage junctions are presented. This technique is particularly useful for prototyping devices due to its simplicity and flexibility of fabrication and has a great potential for high-density integration.Comment: 12 pages, 4 figures, RevTeX4, submitted to AP

    Linkless octree using multi-level perfect hashing

    Get PDF
    The standard C/C++ implementation of a spatial partitioning data structure, such as octree and quadtree, is often inefficient in terms of storage requirements particularly when the memory overhead for maintaining parent-to-child pointers is significant with respect to the amount of actual data in each tree node. In this work, we present a novel data structure that implements uniform spatial partitioning without storing explicit parent-to-child pointer links. Our linkless tree encodes the storage locations of subdivided nodes using perfect hashing while retaining important properties of uniform spatial partitioning trees, such as coarse-to-fine hierarchical representation, efficient storage usage, and efficient random accessibility. We demonstrate the performance of our linkless trees using image compression and path planning examples.postprin

    Origin of New Broad Raman D and G Peaks in Annealed Graphene

    Get PDF
    Since graphene, a single sheet of graphite, has all of its carbon atoms on the surface, its property is very sensitive to materials contacting the surface. Herein, we report novel Raman peaks observed in annealed graphene and elucidate their chemical origins by Raman spectroscopy and atomic force microscopy (AFM). Graphene annealed in oxygen-free atmosphere revealed very broad additional Raman peaks overlapping the D, G and 2D peaks of graphene itself. Based on the topographic confirmation by AFM, the new Raman peaks were attributed to amorphous carbon formed on the surface of graphene by carbonization of environmental hydrocarbons. While the carbonaceous layers were formed for a wide range of annealing temperature and time, they could be effectively removed by prolonged annealing in vacuum. This study underlines that spectral features of graphene and presumably other 2-dimensional materials are highly vulnerable to interference by foreign materials of molecular thickness.open116167Nsciescopu

    The immediate upstream region of the 5 '-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana

    Get PDF
    The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5'-untranslated region (5'-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5'-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions -1 to -21 of the 5'-UTRs in Arabidopsis genes. In particular, the A residue in the 5'-UTR from positions -1 to -5 was required for a high-level translational efficiency. In contrast, the T residue in the 5'-UTR from positions -1 to -5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the -1 to -21 region of the 5'-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes.ope

    Differentiation of mouse induced pluripotent stem cells (iPSCs) into nucleus pulposus-like cells in vitro.

    Get PDF
    A large percentage of the population may be expected to experience painful symptoms or disability associated with intervertebral disc (IVD) degeneration - a condition characterized by diminished integrity of tissue components. Great interest exists in the use of autologous or allogeneic cells delivered to the degenerated IVD to promote matrix regeneration. Induced pluripotent stem cells (iPSCs), derived from a patient's own somatic cells, have demonstrated their capacity to differentiate into various cell types although their potential to differentiate into an IVD cell has not yet been demonstrated. The overall objective of this study was to assess the possibility of generating iPSC-derived nucleus pulposus (NP) cells in a mouse model, a cell population that is entirely derived from notochord. This study employed magnetic activated cell sorting (MACS) to isolate a CD24(+) iPSC subpopulation. Notochordal cell-related gene expression was analyzed in this CD24(+) cell fraction via real time RT-PCR. CD24(+) iPSCs were then cultured in a laminin-rich culture system for up to 28 days, and the mouse NP phenotype was assessed by immunostaining. This study also focused on producing a more conducive environment for NP differentiation of mouse iPSCs with addition of low oxygen tension and notochordal cell conditioned medium (NCCM) to the culture platform. iPSCs were evaluated for an ability to adopt an NP-like phenotype through a combination of immunostaining and biochemical assays. Results demonstrated that a CD24(+) fraction of mouse iPSCs could be retrieved and differentiated into a population that could synthesize matrix components similar to that in native NP. Likewise, the addition of a hypoxic environment and NCCM induced a similar phenotypic result. In conclusion, this study suggests that mouse iPSCs have the potential to differentiate into NP-like cells and suggests the possibility that they may be used as a novel cell source for cellular therapy in the IVD

    Bio-implant as a novel restoration for tooth loss

    Get PDF
    published_or_final_versio
    corecore