8,674 research outputs found

    Quasiparticle Interference on the Surface of the Topological Insulator Bi2_2Te3_3

    Full text link
    The quasiparticle interference of the spectroscopic imaging scanning tunneling microscopy has been investigated for the surface states of the large gap topological insulator Bi2_2Te3_3 through the T-matrix formalism. Both the scalar potential scattering and the spin-orbit scattering on the warped hexagonal isoenergy contour are considered. While backscatterings are forbidden by time-reversal symmetry, other scatterings are allowed and exhibit strong dependence on the spin configurations of the eigenfunctions at k points over the isoenergy contour. The characteristic scattering wavevectors found in our analysis agree well with recent experiment results.Comment: 5 pages, 2 figures, Some typos are correcte

    A New Experiment to Study Hyperon CP Violation and the Charmonium System

    Full text link
    Fermilab operates the world's most intense antiproton source, now exclusively dedicated to serving the needs of the Tevatron Collider. The anticipated 2009 shutdown of the Tevatron presents the opportunity for a world-leading low- and medium-energy antiproton program. We summarize the status of the Fermilab antiproton facility and review physics topics for which a future experiment could make the world's best measurements.Comment: 16 pages, 3 figures, to appear in Proceedings of CTP symposium on Supersymmetry at LHC: Theoretical and Experimental Perspectives, The British University in Egypt, Cairo, Egypt, 11-14 March 200

    Utility and lower limits of frequency detection in surface electrode stimulation for somatosensory brain-computer interface in humans

    Get PDF
    Objective: Stimulation of the primary somatosensory cortex (S1) has been successful in evoking artificial somatosensation in both humans and animals, but much is unknown about the optimal stimulation parameters needed to generate robust percepts of somatosensation. In this study, the authors investigated frequency as an adjustable stimulation parameter for artificial somatosensation in a closed-loop brain-computer interface (BCI) system. Methods: Three epilepsy patients with subdural mini-electrocorticography grids over the hand area of S1 were asked to compare the percepts elicited with different stimulation frequencies. Amplitude, pulse width, and duration were held constant across all trials. In each trial, subjects experienced 2 stimuli and reported which they thought was given at a higher stimulation frequency. Two paradigms were used: first, 50 versus 100 Hz to establish the utility of comparing frequencies, and then 2, 5, 10, 20, 50, or 100 Hz were pseudorandomly compared. Results: As the magnitude of the stimulation frequency was increased, subjects described percepts that were “more intense” or “faster.” Cumulatively, the participants achieved 98.0% accuracy when comparing stimulation at 50 and 100 Hz. In the second paradigm, the corresponding overall accuracy was 73.3%. If both tested frequencies were less than or equal to 10 Hz, accuracy was 41.7% and increased to 79.4% when one frequency was greater than 10 Hz (p = 0.01). When both stimulation frequencies were 20 Hz or less, accuracy was 40.7% compared with 91.7% when one frequency was greater than 20 Hz (p < 0.001). Accuracy was 85% in trials in which 50 Hz was the higher stimulation frequency. Therefore, the lower limit of detection occurred at 20 Hz, and accuracy decreased significantly when lower frequencies were tested. In trials testing 10 Hz versus 20 Hz, accuracy was 16.7% compared with 85.7% in trials testing 20 Hz versus 50 Hz (p < 0.05). Accuracy was greater than chance at frequency differences greater than or equal to 30 Hz. Conclusions: Frequencies greater than 20 Hz may be used as an adjustable parameter to elicit distinguishable percepts. These findings may be useful in informing the settings and the degrees of freedom achievable in future BCI systems

    Development of the Two‐Stage Rapid Estimate of Adult Literacy in Dentistry

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86828/1/j.1600-0528.2011.00619.x.pd

    Deformable registration of X-ray and MRI for post-implant dosimetry in low-dose-rate prostate brachytherapy

    Get PDF
    Purpose Dosimetric assessment following permanent prostate brachytherapy (PPB) commonly involves seed localization using CT and prostate delineation using coregistered MRI. However, pelvic CT leads to additional imaging dose and requires significant resources to acquire and process both CT and MRI. In this study, we propose an automatic postimplant dosimetry approach that retains MRI for soft‐tissue contouring, but eliminates the need for CT and reduces imaging dose while overcoming the inconsistent appearance of seeds on MRI with three projection x rays acquired using a mobile C‐arm. Methods Implanted seeds are reconstructed using x rays by solving a combinatorial optimization problem and deformably registered to MRI. Candidate seeds are located in MR images using local hypointensity identification. X ray‐based seeds are registered to these candidate seeds in three steps: (a) rigid registration using a stochastic evolutionary optimizer, (b) affine registration using an iterative closest point optimizer, and (c) deformable registration using a local feature point search and nonrigid coherent point drift. The algorithm was evaluated using 20 PPB patients with x rays acquired immediately postimplant and T2‐weighted MR images acquired the next day at 1.5 T with mean 0.8 × 0.8 × 3.0 mmurn:x-wiley:00942405:media:mp13667:mp13667-math-0001 voxel dimensions. Target registration error (TRE) was computed based on the distance from algorithm results to manually identified seed locations using coregistered CT acquired the same day as the MRI. Dosimetric accuracy was determined by comparing prostate D90 determined using the algorithm and the ground truth CT‐based seed locations. Results The mean ± standard deviation TREs across 20 patients including 1774 seeds were 2.23 ± 0.52 mm (rigid), 1.99 ± 0.49 mm (rigid + affine), and 1.76 ± 0.43 mm (rigid + affine + deformable). The corresponding mean ± standard deviation D90 errors were 5.8 ± 4.8%, 3.4 ± 3.4%, and 2.3 ± 1.9%, respectively. The mean computation time of the registration algorithm was 6.1 s. Conclusion The registration algorithm accuracy and computation time are sufficient for clinical PPB postimplant dosimetry

    Prenatal Diagnosis of Fetal Cystic Hygromas Associated with Generalized Lymphangiectasis

    Get PDF
    Ultrasonography has made possible the prenatal diagnosis of many congenital fetal abnormalities. This report describes two cases of bilateral cystic hygromas of the neck associated with generalized lymphangiectasis that were diagnosed by ultrasound. Ultrasonic scans revealed moderate polyhydramnios: thick, edematous placenta and edematous fetus with large cystic mass occupying both sides of the neck and extending to the upper chest wall, ascites, and pleural effusion at gestational ages of 21.5 and 24 weeks, respectively. In one case, chromosomal study from amniotic fluid cell culture revealed X chromosome monosomy, often associated with lymphatic anomalies. The prenatal diagnosis was confirmed at birth: both infants delivered prematurely, were stillborn, and showed gross evidence of cystic hygromas of the neck. In this lymphatic defect, chromosomal analysis may be used for the diagnosis and in genetic counseling for subsequent pregnancies

    Limits on Radio Continuum Emission from a Sample of Candidate Contracting Starless Cores

    Get PDF
    We used the NRAO Very Large Array to search for 3.6 cm continuum emission from embedded protostars in a sample of 8 nearby ``starless'' cores that show spectroscopic evidence for infalling motions in molecular emission lines. We detect a total of 13 compact sources in the eight observed fields to 5 sigma limiting flux levels of typically 0.09 mJy. None of these sources lie within 1' of the central positions of the cores, and they are all likely background objects. Based on an extrapolation of the empirical correlation between the bolometric luminosity and 3.6 cm luminosity for the youngest protostars, these null-detections place upper limits of ~0.1 L_sun (d/140pc)^2 on the luminosities of protostellar sources embedded within these cores. These limits, together with the extended nature of the inward motions inferred from molecular line mapping (Lee et al. 2001), are inconsistent with the inside-out collapse model of singular isothermal spheres and suggest a less centrally condensed phase of core evolution during the earliest stages of star formation.Comment: Accepted to the Astronomical Journal; 12 pages, 1 figur

    Iron oxide doped boron nitride nanotubes: structural and magnetic properties

    Full text link
    A first-principles formalism is employed to investigate the interaction of iron oxide (FeO) with a boron nitride (BN) nanotube. The stable structure of the FeO-nanotube has Fe atoms binding N atoms, with bond length of roughly ∌\sim2.1 \AA, and binding between O and B atoms, with bond length of 1.55 \AA. In case of small FeO concentrations, the total magnetic moment is (4ÎŒBohr\mu_{Bohr}) times the number of Fe atoms in the unit cell and it is energetically favorable to FeO units to aggregate rather than randomly bind to the tube. As a larger FeO concentration case, we study a BN nanotube fully covered by a single layer of FeO. We found that such a structure has square FeO lattice with Fe-O bond length of 2.11 \AA, similar to that of FeO bulk, and total magnetic moment of 3.94ÎŒBohr\mu_{Bohr} per Fe atom. Consistently with experimental results, the FeO covered nanotube is a semi-half-metal which can become a half-metal if a small change in the Fermi level is induced. Such a structure may be important in the spintronics context.Comment: 10 pages, 3 figure
    • 

    corecore