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Abstract16

Purpose: Dosimetric assessment following permanent prostate brachytherapy (PPB)17

commonly involves seed localization using CT and prostate delineation using co-18

registered MRI. However, pelvic CT leads to additional imaging dose and requires19

significant resources to acquire and process both CT and MRI. In this study, we pro-20

pose an automatic post-implant dosimetry approach that retains MRI for soft-tissue21

contouring, but eliminates the need for CT and reduces imaging dose while overcom-22

ing the inconsistent appearance of seeds on MRI with three projection X-rays acquired23

using a mobile C-arm.24

Methods: Implanted seeds are reconstructed using X-rays by solving a combinatorial25

optimization problem and deformably registered to MRI. Candidate seeds are located26

in MR images using local hypo-intensity identification. X-ray based seeds are regis-27

tered to these candidate seeds in three steps: 1) rigid registration using a stochastic28

evolutionary optimizer, 2) affine registration using an iterative closest point optimizer,29

and 3) deformable registration using a local feature point search and non-rigid coherent30

point drift. The algorithm was evaluated using 20 PPB patients with X-rays acquired31

immediately post-implant and T2 weighted MR images acquired the next day at 1.5 T32

with mean 0.8×0.8×3.0 mm3 voxel dimensions. Target registration error (TRE) was33

computed based on the distance from algorithm results to manually identified seed lo-34

cations using co-registered CT acquired the same day as the MRI. Dosimetric accuracy35

was determined by comparing prostate D90 determined using the algorithm and the36

ground truth CT-based seed locations.37

Results: The mean±standard deviation TREs across 20 patients including 1774 seeds38

were 2.23 ± 0.52 mm (rigid), 1.99 ± 0.49 mm (rigid+affine), and 1.76 ± 0.43 mm39

(rigid+affine+deformable). The corresponding mean±standard deviation D90 errors40

were 5.8±4.8%, 3.4±3.4%, and 2.3±1.9%, respectively. The mean computation time41

of the registration algorithm was 6.1 s.42

Conclusion: The registration algorithm accuracy and computation time are sufficient43

for clinical PPB post-implant dosimetry.44

ii
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I. Introduction71

Permanent prostate brachytherapy (PPB) is a standard treatment option for localized72

prostate cancer1 and favorable results from recent clinical trials suggest that PPB utiliza-73

tion will increase.2,3,4 Safe delivery of a therapeutic dose using PPB depends critically on74

the final implanted seed locations, which must be localized in the imaging coordinate sys-75

tem for dose calculation and evaluation of dose delivered to the prostate and nearby organs76

at risk (OARs). During the implant, seed locations are typically verified using transrectal77

ultrasound (TRUS) due to its non-invasive real-time imaging capabilities.5 However, seeds78

can be difficult to localize using TRUS due to artifacts caused by tissue interfaces and the79

seeds themselves. Furthermore, intra-operative dose metrics are impacted by edema caused80

by the implant, which dissipates over time as the dose is deposited.6 For these reasons, a81

post-implant dosimetric assessment is considered mandatory, involving the localization of82

seeds, prostate boundaries, and organs at risk between 0 and 42 days after the implant.7,8,9
83

Post-implant dosimetry is conventionally performed using CT due to its widespread84

availability and high contrast produced by metallic seeds.7 However, soft tissue contrast85

in CT is limited, leading to prostate contouring uncertainty, which propagates to uncer-86

tainty in the final dose metrics.10 To overcome this limitation, a multi-modality approach87

has been recommended taking advantage of the unparalleled soft tissue contrast of MRI.11
88

This approach makes use of co-registered CT and MRI to localize the seeds and organs,89

respectively. This approach has demonstrated reduced dosimetric variability compared to90

CT-only post-implant dosimetry11,12 and has been adopted by many clinics.91

While the combined MRI and CT approach improves dosimetric accuracy compared to92

a CT-only approach, it is resource intensive and still subject to limitations. The approach93

requires transporting the patient between the MRI and CT suites, creating the potential94

for prostate deformations due to changes in position, bladder and rectum filling. CT slice95

thickness on the order of 1-3 mm limits seed localization accuracy,12 and registration between96

CT and MRI may be subject to errors. Advanced MRI-to-CT registration techniques have97

been developed to mitigate error;13 however, workflows eliminating the need for both CT98

and MRI are desirable to reduce resource requirements, reduce imaging dose, limit motion,99

and improve accuracy further.100

Last edited June17, 2019
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Two primary techniques have been proposed to overcome limitations of current MRI101

and CT-based dosimetry. The first is MRI-based seed localization. Metallic seeds do not102

generate signal intensity using conventional pulse sequences, so appear as signal voids leading103

to some non-seed features identified as seeds (false positives) and some missing seeds (false104

negatives).14,15 Seeds designed to generate positive contrast have been demonstrated, but105

are not typically integrated with isotopes used for therapy.16 Balanced steady-state free106

precession (bSSFP) pulse sequences can improve MRI quality for seed identification17 and107

susceptibility-based pulse sequences have been developed to provide positive contrast with108

conventional seeds.18,19 Susceptibility-based pulse sequences have recently been combined109

with machine learning-based automatic seed localization enabling all implanted seeds to110

be localized within 0.7 mm error in phantoms.20 Preliminary evidence suggests that this111

performance may translate to patients;21 however, to the authors’ knowledge, robust MRI-112

only seed localization has not been validated in patients and may require hardware and113

software upgrades for implementation in many clinics. The second technique involves the114

combination of projection X-rays and MRI for seed localization acquired sequentially using a115

custom imaging facility (XMR).22,23 By mechanically linking the X-ray and MRI systems, the116

images are inherently registered enabling reliable seed and soft tissue localization. However,117

this system is not widely available, limiting its utility for most clinics.118

Our group has previously developed a multi-modality imaging approach for intra-119

operative PPB dosimetry combining X-ray projection images and TRUS,24,25 taking ad-120

vantage of reliable seed localization using X-rays similar to the XMR system. However, our121

automatic seed reconstruction algorithm is unique in its ability to use a limited set of images122

acquired using a commonly available mobile C-arm while providing improved seed recon-123

struction accuracy relative to CT, with errors ≤ 0.5 mm.24,26 A similar approach combining124

X-rays and MRI is desirable for post-implant dosimetry, which would eliminate the need for125

CT, thereby decreasing radiation dose from imaging and improving seed localization accu-126

racy without requiring specialized hardware. Specifically, this approach would involve X-ray127

imaging for seed reconstruction followed by MR imaging for prostate and OAR contouring,128

and registration of the two modalities for post-implant dose calculation and plan evalua-129

tion in the MRI coordinate system. However, unlike intra-operative TRUS, X-rays and MRI130

cannot be acquired without moving the patient, even if the distance is small when using a mo-131

bile C-arm, creating the potential for local deformations which our previous intra-operative132

I. INTRODUCTION
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algorithm did not account for.25
133

Multiple rigid, affine, and non-rigid algorithms have been proposed for three-dimensional134

point set registration in the presence of noise and missing data, as reviewed by Tam et al.27
135

Deformable registration techniques include minimizing the mean squared distance between136

the moving and fixed point sets using gradient descent optimization while regularizing the137

point translations using a deformation model such as a thin-plate spline.28 Coherent point138

drift (CPD) is an iterative non-rigid registration technique in which the moving point set is139

represented as a Gaussian mixture model (GMM), and the fixed point set is represented as140

observations of the model.29 The centroids of the GMM are updated using an expectation141

maximization approach, and translations are regularized to maintain point topology using142

motion coherence theory.30 CPD may be less subject to local minima than gradient descent-143

based registration, but still may result in sub-optimal solutions in the presence of large initial144

translations or rotations.31 Robust rigid initialization has been proposed using stochastic145

methods such as random sample consensus (RANSAC) or 4-points congruent sets (4PCS).32
146

Combining these approaches may provide robust deformable registration of X-ray and MRI147

as required clinically.148

In this study, we propose a deformable registration approach to align X-ray-based seeds149

and MRI using non-rigid CPD and initialized using stochastic minimization of mean squared150

distances between X-ray-based seeds and MRI-based candidate seeds. This algorithm is ini-151

tialized using an existing X-ray-based seed reconstruction approach.24,33 Our group previ-152

ously presented a preliminary gradient descent-based deformable X-ray to MRI registration153

algorithm for post-implant dosimetry that was evaluated in a subset of implanted seeds.34
154

To our knowledge, this is the only existing intensity-based registration method evaluated155

for this purpose. In the present study, CPD registration algorithm accuracy is evaluated156

in terms of target registration error (TRE) and dosimetry by comparing all implanted seed157

locations and resultant dose distributions with those determined using the standard MRI158

and CT approach. We also analyze the impact of variations in candidate seed localization on159

algorithm accuracy, propose optimal candidate seed localization parameters, and compare160

the CPD registration approach to the previous gradient descent-based approach.34
161

Last edited June17, 2019
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II. Methods162

II.A. Image Acquisition163

Twenty prostate cancer patients treated with TRUS-guided PPB using Theragenics model164

200 103Pd seeds (Theragenics Corp., Buford GA) at Johns Hopkins Hospital were included in165

this study, including 1777 implanted seeds. Three X-rays were taken immediately following166

seed implantation using an OEC 9800 mobile C-arm (GE Healthcare, Chicago IL) as part of167

an IRB-approved protocol for intra-operative dosimetry, and were acquired within a 20◦ angle168

around the anterior-posterior axis between the patient’s legs, e.g. approximately -10◦, 0◦169

(anterior-posterior), and 10◦. Resultant X-ray images had pixel dimensions of 0.4×0.4 mm2.170

MRI and CT scans were performed one day after seed implantation for routine clinical post-171

implant dosimetry using a 1.5 T Magnetom Espree MRI scanner (Siemens Medical Systems,172

Erlangen, Germany) and Brilliance Big Bore CT scanner (Philips, Andover MA). MR images173

were acquired with a body coil (no endorectal coil was used) using a two-dimensional T2174

weighted spin echo pulse sequence with 8690 ms repitition time (TR), 104 ms echo time (TE),175

and 150◦ degree flip angle. Resultant images had 3 mm slice thickness and mean (range) in-176

plane voxel dimensions of 0.8 (0.5-1.3) mm. CT images had mean (range) slice thicknesses of177

3.0 (2.9-4.0) mm and in-plane voxel dimensions of 0.5 (0.4-0.6) mm. A physician contoured178

the prostate on all MR images.179

We identified twenty clinical cases with MRI and CT that could be aligned well rigidly,180

making the cases well-suited for registration algorithm validation. Note that in the data181

sets used for algorithm validation in this study, X-rays were acquired immediately following182

implantation while MRI and CT were acquired the next day as required clinically. In this183

workflow, seed migration may occur, and the patient position is changed from lithotomy for184

X-ray to supine for MRI and CT. Therefore, the images used in this study represent more185

challenging registration problem than the expected clinical scenario where X-ray and MRI186

scans will take place on the same day.187

II.B. Registration Algorithm188

Fig. 1 provides a flow chart outlining major steps of the algorithm, indicating the two de-189

formable registration methods investigated in this study. Implanted seeds are reconstructed190

II. METHODS
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from three X-rays by solving a combinatorial optimization problem24,33 and registered to MR191

images using an intensity-based points-to-volume registration method. As a pre-processing192

step, MR images are filtered to identify candidate seed locations, which are converted to193

a smooth distance map. The X-ray-based seed locations are then rigidly registered to the194

distance map using a stochastic evolutionary optimizer.35 The rigid registration is refined195

using an iterative closest point (ICP) algorithm that estimates an optimal affine transfor-196

mation using singular value decomposition (SVD) at each iteration.36,37 The results of the197

affine registration are used to refine the candidate seed locations and distance map. While198

the ICP algorithm can also be implemented for rigid registration, the iterative approach is199

highly susceptible to local minima. For this reason, we chose to initialize the algorithm using200

the stochastic optimizer, thereby improving algorithm robustness to changes in pose.201

Finally, a deformable registration step is used to account for local tissue deformations202

and seed migration. We compare two deformable registration methods 1) an iterative non-203

rigid CPD algorithm regularized using motion coherence theory29 and 2) gradient descent204

optimization of seed translations regularized by imposing forces between adjacent seeds based205

on a spring model.34 The output of these algorithms is a set of seed locations in the MRI206

coordinate system enabling computation of the radiation dose delivered to the prostate and207

nearby organs at risk.38,39 The details of each algorithm step are described as follows.208

II.B.1. Seed reconstruction from X-rays209

Seeds are reconstructed from X-rays using an algorithm previously developed by our group.210

APC-REDMAPS (REduced-Dimensionality Matching Algorithm for Prostate Seed recon-211

struction with Automatic Pose Correction) simultaneously corrects X-ray image pose errors212

and reconstructs seeds as a three-dimensional point cloud,24,33 and is briefly described as213

follows. Three X-ray images are taken at different angles (poses) using an imaging system214

such as a mobile C-arm or kilo-voltage imaging system commonly available on linear accel-215

erators. Image poses are tracked using an X-ray tracking fiducial that consists of a set of216

radio-opaque beads. The seeds and the fiducials are automatically segmented, discriminated217

from one another, and used to detect image pose.24,40 The three-dimensional seed cloud is218

then reconstructed by determining the unique correspondences of all the seeds among the219

images in the presence of partial seed occlusion using binary combinatorial optimization.33
220

Last edited June17, 2019 II.B. Registration Algorithm
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II.B.2. MRI Pre-Processing221

Permanent brachytherapy seeds do not generate MR signal and typically appear as dark222

voids in T2 weighted MR images as shown in Fig. 1.41 We implemented pre-processing steps223

to identify candidate seed locations using MRI based on local hypo-intensities. First, the224

MRI was resampled using linear interpolation to have isotropic 0.8×0.8×0.8 mm3 voxels to225

minimize directional bias in the algorithm. Next, background intensity variations in the226

MRI were mitigated using a filter described by227

I ′i,j,k = (I ∗K)i,j,k − Ii,j,k (1)228

where I ′i,j,k is a filtered image voxel, Ii,j,k is a raw image voxel, ∗ represents a two-dimensional229

convolution, and K is a uniform two-dimensional circular kernel with 5 mm radius oriented230

in the axial plane. Due to the 3 mm slice thickness, convolution in the out-of-plane direction231

was not found to influence results so was omitted to decrease computation time. This232

operation produced the filtered image in Fig. 1, in which candidate seed locations appeared233

as hyper-intensities.234

Candidate seed locations were isolated from the filtered image using a local peak iden-235

tification algorithm, which exhaustively searched the spherical neighborhood around each236

voxel within the prostate contour to find the local maximum intensity. The radius of this237

neighborhood was set as 4 mm. The resultant candidate seeds were sorted in descending238

order based on the associated filtered image signal intensity. Candidate seeds were retained239

with filtered image intensity ≥10% of the maximum, including a maximum of 1.3N candi-240

date seeds where N is equal to the number of seeds in the X-ray based seed cloud. Since the241

MRI pre-processing step identifies all local hypo-intensities, including some non-seed features242

such as needle tracks, the threshold of 1.3N provided a sufficient number of true positive243

candidate seed locations for robust registration. This threshold selection is described further244

in Section II.C.3.245

The final set of candidate seeds was then converted to a Danielsson distance map with246

II. METHODS II.B. Registration Algorithm
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isotropic 0.5×0.5×0.5 mm3 voxel dimensions.42 The distance map can be described using247

D(~p) = min
n
‖~p− ~cn‖ (2)248

where D(~p) is the value of the distance map at a voxel location ~p, and ~cn is the coordinates249

of an MRI-based candidate seed.250

II.B.3. Rigid Registration251

The X-ray based seed cloud was initially registered to the distance map by finding the rigid252

transformation that minimized the mean squared distance between the X-ray-based seeds253

and the MRI-based candidate seed locations using254

R̂ = arg min
R

1

N

N∑
i=1

D(R~si)
2 (3)255

whereR is a rigid transformation matrix, and ~si is the coordinates of a seed in the X-ray based256

seed cloud containing a total of N seeds. The six degree-of-freedom rigid transformation257

R was parameterized for optimization using three Euler angles and a three-dimensional258

translation vector. Equation 3 was minimized using a stochastic evolutionary optimizer.35
259

The transformation parameters were initialized assuming zero rotation and a translation260

vector that aligned the centers of mass of the X-ray-based seeds and the MRI-based candidate261

seeds. The optimization search space was initialized using parameter scale factors of 10262

radians−1 (0.17 degrees−1) and 1 mm−1, initial search radius of 3 mm, growth factor of 1.1,263

shrink factor of 0.96, and stopping criterion of the Frobenius norm of the covariance matrix264

< 1× 10−9.35
265

II.B.4. Affine Registration266

To account for potential changes in scale, an affine registration was performed following the267

rigid registration. We employed an affine ICP algorithm36 for this purpose with stringent268

criteria for point correspondences (distance <3 mm) to mitigate the impact of false positive269

seeds.25 The ICP algorithm estimates the affine transformation mapping the X-ray-based270

seeds to the candidate seed locations using the method described by Umeyama,37 which271

Last edited June17, 2019 II.B. Registration Algorithm
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uses SVD of the covariance matrix of point positions to estimate a seven degree-of-freedom272

affine transformation incorporating rotation, translation, and isotropic scaling while avoiding273

reflections. Point correspondences are estimated at each iteration using a Kd-tree search274

constrained to a 3 mm radius.43 The stopping criterion was defined as the change in mean275

squared residuals < 1× 10−8 between iterations.276

II.B.5. Candidate Seed Location Refinement277

The candidate seed locations were refined using the affine registration results by exhaustively278

searching the spherical neighborhood of each registered seed location for the local maximum279

in filtered signal intensity. A spherical neighborhood radius of 3 mm was used to identify280

seeds locally, while mitigating the possibility of identifying an incorrect adjacent seed. This281

search radius selection is discussed further in Section II.C.3. Refined candidate seed locations282

were again retained if the associated signal intensity was ≥10% of the maximum filtered283

image intensity.284

II.B.6. Deformable Registration285

In this study, we investigate the use of two deformable registration techniques to account for286

local tissue deformation between the X-ray and MRI acquisitions. The two techniques are287

a CPD approach, optimized using iterative expectation maximization, and a spring-model288

approach, optimized using gradient descent. Both approaches use the results of the affine289

registration as the moving point set, and the refined candidate seed locations as the fixed290

point set. Both approaches also find a transformation function ν that minimizes the distance291

between the moving point set and the fixed point set using an external energy term UE(ν)292

while maintaining point cloud topology and deformation smoothness using an internal energy293

(regularization) term UI(ν). The general deformable registration cost function is294

f(ν) = UE(ν) +
λ

2
UI(ν) (4)295

where λ defines the trade-off between goodness of fit and regularization.296

II. METHODS II.B. Registration Algorithm
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Coherent Point Drift (CPD): Non-rigid CPD involves a maximum likelihood estimation297

of GMM centroid locations (moving point set) translated by a displacement function νCPD298

relative to a set of GMM observations (fixed point set). The displacement function νCPD is299

a set of weights of Gaussian basis functions defining translations in each direction for each300

seed in the moving point set. The external energy term is a negative log-likelihood function301

UE(νCPD) = −
M∑
i=1

log
[
ω

1

M
+ (1− ω)

N∑
j=1

1

N
p(~ci|j, νCPD)

]
(5)302

where ω defines the weight of a uniform distribution term corresponding to the expected303

fraction of outliers in the fixed point set. N and M are the numbers of seeds in the moving304

and fixed point sets, respectively. The term p(~ci|j, νCPD) is a normalized Gaussian function305

of the Euclidean distance between the fixed point ~ci and the transformed moving point306

T (~sj, νCPD). The internal energy term represents a high-pass filter of the displacement307

function308

UI(νCPD) =

∫
<3

|ν̃(k)|
G̃(k, β)

dk (6)309

where G(k, β) is a Gaussian function with variance β, ∼ represents the Fourier transform,310

and k is the spatial frequency parameter. This regularization enforces motion coherence311

by limiting high frequency displacement components, causing nearby points have similar312

displacements as described by motion coherence theory.29,30 The external and internal energy313

terms were combined according to Eq. 4. In this study, ω was set to 0.05. β and λ were set314

to 3, which have been shown to result in robust non-rigid registration results.29 This cost315

function was minimized using an iterative expectation maximization approach with stopping316

criterion of covariance of the GMM < 1 × 10−5. Further details regarding the formulation317

of the expectation and maximization steps are provided by Myronenko and Song.29
318

Spring Model: A gradient-descent based optimization approach regularized using a spring319

model was employed, extended from the method proposed by Park et al.,34 which was320

previously validated on a subset of implanted seeds. Briefly, the refined candidate seed321

locations were converted to a Danielsson distance map42, which was truncated at 3 mm to322

mitigate the influence of distant candidate seeds. This distance map was used to define an323

Last edited June17, 2019 II.B. Registration Algorithm
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external energy term UE(νspring), where νspring is a set of translation components for each324

seed in the moving point set. An internal energy term UI(νspring) was defined based on a325

spring model, penalizing changes in distance between nearby groups of seeds. The external326

and internal energy terms were combined according to Eq. 4 with a λ value of 40. The cost327

function was minimized using a limited memory bounded quasi-newton BFGS optimizer.44
328

The seed translation components were bounded within [-3, 3] mm and optimizer stopping329

criterion of change in cost function value < 1 × 10−9 between iterations. Further details of330

the non-linear spring model and derivation of the cost function are provided in the Appendix.331

II.C. Algorithm Validation332

The registration algorithm was implemented in C++ using the Insight Segmentation and333

Registration Toolkit (ITK) (Kitware, Clifton Park NY), Point Cloud Library (PCL),45 and334

the CPD library developed by Gadomski (http://www.gadom.ski/cpd) and run on a laptop335

PC with a 2.6 GHz dual core Intel Core i5-7300U CPU and 16 GB of memory.336

II.C.1. Target Registration Error337

Target registration errors (TREs) were calculated following each major step of the regis-338

tration algorithm to demonstrate and compare the improvements in accuracy attributed to339

affine and deformable registration methods. Manual CT/MRI-based seed locations were used340

as the ground truth for TRE calculation. We selected twenty patient data sets for which the341

CT and MR images exhibited little deformation leading to an accurate rigid registration,342

and CT seeds were automatically segmented using Variseed treatment planning software343

(Varian Medical Systems, Palo Alto CA) followed by an expert medical physicist’s manual344

adjustment on the CT image. The CT was rigidly registered to the MRI using a manual345

landmark approach, where seeds appearing in both images were used as fiducials to align346

the images. This approach was intended to minimize the registration error of the CT-based347

seed cloud to the MRI.348

TREs were calculated for each seed following each registration method using one-to-one349

correspondences between the registered X-ray-based seeds and ground truth seeds. A single350

set of X-ray to ground truth correspondences was determined for each patient using the351

results of the deformable spring-model registration. This set of correspondences was used to352

II. METHODS II.C. Algorithm Validation
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calculate the TREs for each registration approach, and was determined using an iterative353

correspondence estimation algorithm in PCL, CorrespondenceEstimationBackProjection.45
354

TREs were then calculated as the three-dimensional Euclidean distances between the ground355

truth and X-ray-based seed locations following each registration method.356

The mean, standard deviation (SD), and maximum TRE were calculated for each step357

of the registration algorithm for each patient. Due to the difference between the axial (in-358

plane) and superior-inferior (out-of-plane) spatial resolution of the MRI and CT, statistics359

were also calculated in terms of the in-plane and out-of-plane TRE components. Mean and360

maximum TREs were compared between the two deformable registration approaches in R361

using paired t-tests.362

II.C.2. Dosimetric Analysis363

Dose distributions were calculated following each registration approach using the TG-43364

formalism and Theragenics model 200 103Pd point source parameters.38 The clinical source365

strengths were used to calculate dose distributions for each patient in the MRI coordinate366

system with isotropic 2 mm dose grids. The post-implant dose distribution calculated based367

on the clinical CT and MRI registration approach and was used as the ground truth for368

comparison. The metric of interest was the minimum dose delivered to 90% of the prostate369

(D90),8 which was calculated for each patient based on the clinical prostate contour us-370

ing SlicerRT.46 The error in prostate D90 was calculated for each patient and registration371

approach.372

II.C.3. Sensitivity Analysis373

Simulations were performed to assess the sensitivity of the rigid and deformable registration374

results to variations in the hyper-parameters used to identify the candidate seed locations.375

Since multiple factors may cause MR image quality to vary, robustness to variations in376

candidate seed identification is important for clinical applicability. Hyper-parameters were377

systematically varied and the algorithm was re-applied to all 20 patients. TREs were re-378

computed as described in Section II.C.1. In all simulations, the X-ray-to-ground truth seed379

correspondences were kept constant based on the deformable registration results obtained380

in Section II.C.1. to mitigate the impact of seed correspondences on the sensitivity analysis381
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results.382

Rigid Registration: Two parameters impacting the initial candidate seed localization383

method used for rigid registration are 1) the search radius of the local peak identification384

step and 2) the constraint on the maximum number of candidate seeds as described in Section385

II.B.2. The search radius of the local peak identification step was varied from 2 mm to 5 mm386

in 1 mm increments, and the constraint on the maximum number of candidate seeds was387

varied from 0.5N to 2N in 0.1N increments, where N is the number of seeds implanted. We388

investigated the impact of these two parameters on the number of candidate seeds actually389

identified, and on the resultant mean TRE following rigid registration.390

Deformable Registration: The parameter impacting the refined candidate seed localiza-391

tion method used for deformable registration is the local search radius described in Section392

II.B.5., applied following affine registration. This local search radius was varied from 1 mm393

to 6 mm in 1 mm increments. The resultant mean and maximum TREs were calculated394

following deformable registration using the CPD and spring model approaches for each local395

search radius value.396

III. Results397

III.A. Target Registration Error398

Of the 1777 seeds implanted, one seed unidentified on CT for one patient due to potential399

migration, and two seeds identified >1 cm outside of the prostate in a second patient were400

excluded resulting in 1774 seeds for validation. Fig. 2 shows example MR images from two401

patients with seed locations identified at each step of the registration algorithm. The final402

column contains corresponding images from co-registered CT with manually identified seed403

locations that were used as the ground truth in this study. Seeds located within 3 mm of the404

selected slice were displayed in each image, leading to some seeds appearing or disappearing405

between images.406

Fig. 3 contains histograms of TREs of all 1774 seeds following each component of the407

registration algorithm, showing incremental reductions in TRE with each step. Table 1408

III. RESULTS
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summarizes statistics of total TREs for all 1774 seeds, along with the in-plane (axial) and409

out-of-plane (superior-inferior) TRE components. The patient-specific mean TREs (mean410

± SD) for the deformable-spring and deformable-CPD approaches were 1.81±0.48 mm and411

1.76±0.43 mm, respectively (p = 0.21), and patient-specific maximum TREs were 5.37±1.25412

mm and 5.07±1.38 mm, respectively (p = 0.009). The in-plane TRE component was larger413

than the out-of-plane component following the rigid and affine registrations, but was smaller414

than the out-of-plane component following deformable registration.415

Fig. 4 contains boxplots of TREs for each individual patient following each step of the416

registration algorithm. In general, TREs decreased with each step of the algorithm for each417

patient. The affine and deformable registration led to incremental improvements in accuracy418

for each individual patient. Specifically, patients with the largest TREs following the rigid419

registration tended to have the largest TREs following affine and deformable registration as420

well. The deformable-CPD approach led to smaller mean TREs than the deformable-spring421

approach in 13 patients and smaller maximum TREs in 15 patients.422

For the CPD approach, 1225 (69.0%), 1599 (90.1%), and 1751 (98.7%) of seeds had423

TREs within 2 mm, 3 mm, and 5 mm, respectively. Visual inspection of the 23 (1.3%)424

seeds with TREs >5 mm showed that 7 were outside of the prostate boundary, 4 were in425

the seminal vesicles, 3 were in the apex, and 1 was in the base. The remaining 8 cases426

appeared to be the result of sub-optimal one-to-one correspondences with the CT-based427

seeds used for TRE calculation. These seeds appeared near groups of other seeds, leading to428

unclear one-to-one correspondences with the CT-based seeds with at least one X-ray-based429

seed assigned to a distant CT-based seed. Since deformations near the prostate periphery430

appeared to contribute to these sub-optimal correspondences, the resultant TREs were not431

excluded from analysis.432

The mean computation times of the APC-REDMAPS X-ray seed reconstruction (includ-433

ing X-ray image segmentation, image pose computation, and seed reconstruction) was 30 s.26
434

The mean computation times of the deformable-spring and deformable-CPD X-ray to MRI435

registration algorithms (including rigid and affine steps) were 9.6 s and 6.1 s, respectively.436
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III.B. Dosimetric Analysis437

Example MRI and dose distributions calculated using each registration approach are shown438

in Fig. 5, along with the ground truth dose distributions derived from the clinical CT-to-MRI439

registration approach in Fig. 5c). Qualitatively, the dose distribution calculated based on440

the CPD approach appeared similar to the CT-based dose distribution, particularly near the441

urethra. Boxplots of the prostate D90 error for each registration approach are shown in Fig.442

5a). The mean±SD magnitude of error for the rigid, affine, spring, and CPD approaches443

was 5.8±4.8%, 3.4±3.4%, 2.7±2.8%, and 2.3±1.9%, respectively. With the CPD approach,444

18 (90%) of the patients had prostate D90 error within 5%, and the largest error was -6.8%.445

III.C. Sensitivity Analysis446

III.C.1. Rigid Registration447

Plots of the number of candidate seeds identified versus the constraint on the maximum num-448

ber of candidate seeds are shown in Fig. 6a). Increases in the constraint led to proportional449

increases in the number of candidate seeds identified up to a plateau value, beyond which450

the number of candidate seed locations identified remained approximately constant. This451

plateau value depended on the local peak search radius, where larger radii had lower plateau452

values. For a 4 mm search radius, the plateau value was approximately 1.25. Corresponding453

plots of the mean rigid TRE versus the constraint on the maximum number of candidate454

seeds is shown in Fig. 6b). Mean TREs tended to decrease with increasing constraint value455

up to a constraint of 1.0, beyond which the mean TRE change depended on the local peak456

search radius. The 4 mm search radius resulted in low and stable TREs for constraint values457

between 1.1 and 1.6. A local peak search radius of 4 mm and a constraint on the maximum458

number of candidate seeds of 1.3N were selected as default values.459

III.C.2. Deformable Registration460

Plots of the mean and maximum deformable TREs versus the refined candidate seed search461

radius are shown in Fig. 6c) and d), respectively. The CPD approach provided decreased462

mean TREs compared to the spring approach for search radii <4 mm, with a minimum value463

with a search radius of 3 mm. Similarly, the CPD approach provided decreased maximum464

III. RESULTS III.B. Dosimetric Analysis
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TREs for search radii <6 mm, with a minimum value with a search radius of 3 mm. Both465

deformable registration approaches demonstrated increases in TRE with search radii >3466

mm. A refined candidate seed search radius of 3 mm was selected as the default value.467

IV. Discussion468

We have presented an algorithm for deformable registration of X-ray images and MRI for469

PPB post-implant dosimetry. This algorithm enables a clinical workflow where soft tissue470

contouring can by performed using MRI, and dose can be calculated in the MRI coordinate471

system without the need for CT. By saving seed locations in DICOM-RT format, it would472

be possible to use commercially available treatment planning systems for dose calculation.473

Replacing the CT scan with three projection X-rays for seed localization reduces the effective474

imaging dose by a factor of ∼10,47 and reduces clinical resource requirements. The TRE475

distributions following the deformable-CPD registration approach resulted in mean±SD error476

in prostate D90 of 2.3±1.9%. This dosimetric error resulting from the TRE distribution477

with mean of 1.76 mm coincide with the simulation results of Su et al., which indicated478

that normally-distributed seed localization errors with 2 mm standard deviation lead to479

prostate D90 errors within 5%.48 Prostate D90 has previously been correlated with clinical480

outcomes,49 and an uncertainty in D90 of 5% has been suggested to be clinically reasonable481

in the context of other sources of uncertainty, such as contouring.50
482

In this study, we compared two general approaches for deformable point cloud registra-483

tion,27 and found that the CPD approach resulted in decreased TRE and computation time484

when compared to the spring model-based gradient descent approach. To our knowledge,485

the spring model approach is the only other algorithm previously investigated for this ap-486

plication.34 The comparison showed that the CPD approach led to a statistically significant487

decrease in the maximum TREs. The results of the sensitivity analysis suggest that spring488

model-based regularization may limit seed translations to a greater degree than the CPD489

approach, where the spring model provides smaller TREs than the CPD approach for refined490

candidate search radii >4 mm. Decreasing the coefficient of the regularization term of the491

spring model cost function may lead to small improvements in accuracy; however, the CPD492

algorithm led to improved registration accuracy for the data in this study. Furthermore, the493

accuracy of both deformable registration approaches appeared to be limited by the quality494
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of the candidate seeds identified from MRI, which is limited by image quality. The results495

of the sensitivity analysis suggest optimal parameters for candidate seed localization and496

refinement using clinical T2 weighted MRI using either deformable registration approach.497

A limitation of the images analyzed in this study was the spatial resolution of the clinical498

T2 weighted MRI, which had mean voxel dimensions of 0.8×0.8×3.0 mm3. The rigid and499

affine registration steps led to TREs with smaller out-of-plane than in-plane components,500

potentially attributed to the 0.4 mm superior-inferior spatial resolution of the X-rays used for501

initial seed reconstruction. Deformable registration using the spring-model or CPD approach502

led to TREs with smaller in-plane than out-of-plane components, suggesting that improved503

deformable registration accuracy can be achieved through improved MRI spatial resolution.504

We did not directly evaluate the application of this algorithm to MR images acquired with505

different hardware or pulse sequences; however, the MRI pre-processing step involved signal506

intensity normalization within the prostate to limit sensitivity to changes in signal gain.507

Furthermore, we did not directly evaluate the application of this algorithm to different508

seed models; however, we expect that seed models leading to local hypo-intensities can be509

identified in the pre-processing step and used for deformable registration.510

Limited spatial resolution of the CT likely also contributed to the measured TREs511

through non-zero target localization error from both the manual identification of seeds on CT512

and registration of the CT to MRI51. Inter-observer variability in CT-based seed localization513

has been shown to be 1.1 mm.12 The CT and MRI registration accuracy may also have been514

influenced by the landmarks chosen for alignment, the CT and MRI acquisition parameters,515

or changes in patient position, bladder and rectum filling between the CT and MRI scans.516

Registration errors between CT and MRI would lead to systematic increases in measured517

TRE.518

The image acquisition timeline used in this study was selected to provide test images519

(X-ray and MRI) and a reasonable ground truth (CT) for deformable registration while re-520

maining clinically feasible. The timeline began with X-rays acquired immediately following521

the PPB implant followed by CT and MRI acquired the next day. In this scenario, we expect522

prostate deformations to occur between X-ray imaging and CT/MRI, thereby producing im-523

ages that test the ability for the algorithm to perform deformable registration between X-rays524

and MRI in vivo. A limitation of this approach is the short time elapsing between CT and525

IV. DISCUSSION
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MRI, during which further deformations may take place that would increase the measured526

TREs. We specifically selected patient cases for algorithm validation that displayed little527

or no visible deformation between CT and MRI to mitigate this effect. Another limitation528

of this timeline is that the changes in seed position observed between X-rays and MRI are529

likely larger than those that would be expected clinically, where we expect X-rays and MRI530

to be acquired on the same day, similar to the CT/MRI approach. A portion of the 1.3% of531

seeds with TREs >5 mm may have been caused by seed migration taking place in this one532

day interval.533

In this study, we considered seeds implanted within the prostate and outside of the534

prostate within 1 cm of the prostate periphery, which commonly arise in peripherally loaded535

treatment plans. Seeds at the prostate periphery, particularly within the seminal vesicles,536

base, and apex may migrate following insertion.52 Visual inspection of the seeds with TREs537

>5 mm suggest that most of the apparent registration errors occurred in these regions prone538

to seed migration. For clinical post-implant dosimetry, X-rays used for seed reconstruction539

will typically be acquired on the same day as the MRI to mitigate potential seed migration540

and reduce the maximum TREs, similar to the CT/MRI approach. The deformable regis-541

tration algorithm is currently limited to account for local deformations ≤3 mm. Based on542

the results from this study, a 3 mm search neighborhood is sufficient to model most local543

prostate deformations while avoiding errors introduced by nearby seeds.544

Finally, the X-ray and MRI-based post-implant dosimetry approach proposed in this545

study depends critically on the geometric accuracy of the MRI. This type of geometric546

error could lead to dosimetric errors when X-ray-based seeds are deformably registered to547

the MRI. The MR images analyzed in this study were acquired using the MRI simulator548

in our radiation oncology department, which corrects for geometric distortions using an549

algorithm available in the Siemens console workstation (Syngo).53,54 The MRI simulator550

also undergoes daily and monthly quality assurance using a phantom designed to detect551

geometric distortions.552
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V. Conclusions553

We have proposed novel X-ray and MRI registration methods for PPB post-implant dosime-554

try. The proposed method requires only three X-rays acquired using a mobile C-arm imaging555

system for seed localization in the MRI coordinate system, potentially enabling reliable post-556

implant dosimetry without the need for CT. The total combined execution time of the X-ray557

based seed reconstruction and deformable registration is 36.1 s. The algorithm accuracy and558

computation time is sufficient for clinical PPB post-implant dosimetry.559

Appendix560

The derivation of the spring model-based cost function is described as follows, extended from561

the method proposed by Park et al.34 First, we define an external energy term UE,i for each562

seed ~si in the moving point set as563

UE,i = D(~si + ∆~si) (7)564

where D(~p) is the distance from ~p to the nearest candidate seed location as defined in Eq. 2565

and ∆~si is a set of local [∆xi,∆yi,∆zi] displacement components. We then define an internal566

energy term UI,i based on a non-linear spring model between adjacent seeds. Hooke’s law567

states that the restoring force F exerted by a spring displaced by distance ∆L is given by568

F = k∆L where k is a spring constant. In an ideal spring, k is inversely proportional to569

the original spring length L. To allow local deformations while preventing large translations570

that may change seed cloud topology, we define a non-linear spring constant for a pair of571

seeds ~si and ~sj as572

ki,j =
λ

L2
i,j

(8)573

where λ is a constant defining the spring stiffness and574

Li,j = ‖~si − ~sj‖ (9)575
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The potential energy UI,i,j associated with a displacement ∆Li,j is then576

UI,i,j =
λ

2

(
∆Li,j

Li,j

)2

(10)577

The term ∆Li,j is approximated for two seeds ~si and ~sj displaced by vectors ∆~si and ∆~sj,578

as579

∆Li,j = ‖(~si + ∆~si)− (~sj + ∆~sj)‖ − ‖~si − ~sj‖

≈ ‖∆~si −∆~sj‖
(11)580

The internal energy for seed ~si surrounded by Q neighboring seeds is then581

UI,i =
λ

2

Q∑
j=1

(
‖∆~si −∆~sP (i,j)‖
‖~si − ~sP (i,j)‖

)2

(12)582

where P is a two-dimensional array of indices in which element P (i, j) is the index of the583

jth-nearest neighbor to ~si. The spring model cost function is then defined according to Eq.584

4 where the external and internal energy terms are defined for the set of N seeds as585

UE(νspring) =
N∑

i=1

D(~si + ∆~si) (13)586

λ

2
UI(νspring) =

λ

2

N∑
i=1

Q∑
j=1

(
‖∆~si −∆~sP (i,j)‖
‖~si − ~sP (i,j)‖

)2

(14)587

where λ can be interpreted as the spring stiffness or degree of regularization, and νspring is588

the set of local displacements {∆~s1,∆~s2... ∆~sN}. Values of Q and λ of 5 and 40 were used in589

this study. P was populated prior to optimization using a Kd-tree nearest neighbors search590

algorithm.43 Using the spring model energy terms, Eq. 4 was minimized using gradient591

descent optimization based on the partial derivatives592

∂f(νspring)

∂∆ui

=
∇D(~si + ∆~si)u

D(~si + ∆~si)
+ λ

M∑
j=1

∆ui −∆uP (i,j)

‖~si − ~sP (i,j)‖2
(15)593

where u is x, y, or z.594
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Figure Captions785

Figure 1. Flow chart outlining the proposed deformable X-ray and MRI registration algo-786

rithm.787

Figure 2. Example MR images with registered X-ray-based seed locations from two patients.788

Figure 3. Histograms of TREs following each registration step for 1774 seeds. Mean values789

are indicated by the dashed lines.790

Figure 4. Boxplots of TREs for each step of the registration algorithm for each patient.791

Center-lines indicate medians, boxes indicate inter-quartile range, and dots indicate TREs792

for each seed.793

Figure 5. a) Boxplots of of the prostate D90 error relative to the CT and MRI-based post-794

implant dosimetry approach. Center-lines indicate medians, boxes indicate inter-quartile795

range, and dots indicate the error for each patient. b-g) Example MRI and corresponding796

dose distributions in the MRI coordinate system.797

Figure 6. a) Plot of the number of candidate seeds locations identified versus the constraint798

on maximum number of candidate seeds, both normalized to the number of seeds implanted.799

b) Mean rigid TRE versus the constraint on the maximum number of candidate seeds.800

c) Mean deformable TRE versus the refined candidate seed search radius. d) Maximum801

deformable TRE versus the refined candidate seed search radius. In all plots, dots represent802

the mean value across patients and error bars represent standard error.803
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Tables804

Table 1: Mean±SD TRE metrics across patients (mm).
TRE Component Method Mean SD Max.

Total

Rigid 2.23±0.52 1.04±0.27 5.86±1.58
Affine 1.99±0.49 1.00±0.23 5.59±1.32

Deformable-Spring 1.81±0.48 0.99±0.24 5.37±1.25
Deformable-CPD 1.76±0.43 0.93±0.23 5.07±1.38

In-plane

Rigid 1.56±0.48 0.90±0.25 5.14±1.57
Affine 1.34±0.39 0.84±0.24 4.82±1.53

Deformable-Spring 1.14±0.34 0.79±0.24 4.57±1.46
Deformable-CPD 1.09±0.30 0.75±0.23 4.37±1.39

Out-of-plane

Rigid 1.33±0.36 0.95±0.24 4.44±1.61
Affine 1.24±0.36 0.91±0.19 4.16±1.22

Deformable-Spring 1.21±0.35 0.91±0.19 4.18±1.22
Deformable-CPD 1.19±0.31 0.87±0.19 3.97±1.26
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Figure 1: Flow chart outlining the proposed deformable X-ray and MRI registration algo-
rithm.
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Figure 2: Example MR images with registered X-ray-based seed locations from two patients.
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Figure 3: Histograms of TREs following each registration step for 1774 seeds. Mean values
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Figure 5: a) Boxplots of of the prostate D90 error relative to the CT and MRI-based post-
implant dosimetry approach. Center-lines indicate medians, boxes indicate inter-quartile
range, and dots indicate the error for each patient. b-g) Example MRI and corresponding
dose distributions in the MRI coordinate system.
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Figure 6: a) Plot of the number of candidate seeds locations identified versus the constraint
on maximum number of candidate seeds, both normalized to the number of seeds implanted.
b) Mean rigid TRE versus the constraint on the maximum number of candidate seeds.
c) Mean deformable TRE versus the refined candidate seed search radius. d) Maximum
deformable TRE versus the refined candidate seed search radius. In all plots, dots represent
the mean value across patients and error bars represent standard error.
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