25 research outputs found

    Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

    Full text link
    Diabetic eye disease is one of the fastest growing causes of preventable blindness. With the advent of anti-VEGF (vascular endothelial growth factor) therapies, it has become increasingly important to detect center-involved diabetic macular edema (ci-DME). However, center-involved diabetic macular edema is diagnosed using optical coherence tomography (OCT), which is not generally available at screening sites because of cost and workflow constraints. Instead, screening programs rely on the detection of hard exudates in color fundus photographs as a proxy for DME, often resulting in high false positive or false negative calls. To improve the accuracy of DME screening, we trained a deep learning model to use color fundus photographs to predict ci-DME. Our model had an ROC-AUC of 0.89 (95% CI: 0.87-0.91), which corresponds to a sensitivity of 85% at a specificity of 80%. In comparison, three retinal specialists had similar sensitivities (82-85%), but only half the specificity (45-50%, p<0.001 for each comparison with model). The positive predictive value (PPV) of the model was 61% (95% CI: 56-66%), approximately double the 36-38% by the retinal specialists. In addition to predicting ci-DME, our model was able to detect the presence of intraretinal fluid with an AUC of 0.81 (95% CI: 0.81-0.86) and subretinal fluid with an AUC of 0.88 (95% CI: 0.85-0.91). The ability of deep learning algorithms to make clinically relevant predictions that generally require sophisticated 3D-imaging equipment from simple 2D images has broad relevance to many other applications in medical imaging

    Service evaluation of the implementation of a digitally-enabled care pathway for the recognition and management of acute kidney injury

    Get PDF
    Acute Kidney Injury (AKI), an abrupt deterioration in kidney function, is defined by changes in urine output or serum creatinine. AKI is common (affecting up to 20% of acute hospital admissions in the United Kingdom), associated with significant morbidity and mortality, and expensive (excess costs to the National Health Service in England alone may exceed £1 billion per year). NHS England has mandated the implementation of an automated algorithm to detect AKI based on changes in serum creatinine, and to alert clinicians. It is uncertain, however, whether ‘alerting’ alone improves care quality. We have thus developed a digitally-enabled care pathway as a clinical service to inpatients in the Royal Free Hospital (RFH), a large London hospital. This pathway incorporates a mobile software application - the “Streams-AKI” app, developed by DeepMind Health - that applies the NHS AKI algorithm to routinely collected serum creatinine data in hospital inpatients. Streams-AKI alerts clinicians to potential AKI cases, furnishing them with a trend view of kidney function alongside other relevant data, in real-time, on a mobile device. A clinical response team comprising nephrologists and critical care nurses responds to these AKI alerts by reviewing individual patients and administering interventions according to existing clinical practice guidelines. We propose a mixed methods service evaluation of the implementation of this care pathway. This evaluation will assess how the care pathway meets the health and care needs of service users (RFH inpatients), in terms of clinical outcome, processes of care, and NHS costs. It will also seek to assess acceptance of the pathway by members of the response team and wider hospital community. All analyses will be undertaken by the service evaluation team from UCL (Department of Applied Health Research) and St George’s, University of London (Population Health Research Institute)

    Feasibility of Automated Deep Learning Design for Medical Image Classification by Healthcare Professionals with Limited Coding Experience

    Get PDF
    Deep learning has huge potential to transform healthcare. However, significant expertise is required to train such models and this is a significant blocker for their translation into clinical practice. In this study, we therefore sought to evaluate the use of automated deep learning software to develop medical image diagnostic classifiers by healthcare professionals with limited coding – and no deep learning – expertise. We used five publicly available open-source datasets: (i) retinal fundus images (MESSIDOR); (ii) optical coherence tomography (OCT) images (Guangzhou Medical University/Shiley Eye Institute, Version 3); (iii) images of skin lesions (Human against Machine (HAM)10000) and (iv) both paediatric and adult chest X-ray (CXR) images (Guangzhou Medical University/Shiley Eye Institute, Version 3 and the National Institute of Health (NIH)14 dataset respectively) to separately feed into a neural architecture search framework that automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity and positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning model developed on a subset of the HAM10000 dataset, we performed external validation using the Edinburgh Dermofit Library dataset. Diagnostic properties and discriminative performance from internal validations were high in the binary classification tasks (range: sensitivity of 73.3-97.0%, specificity of 67-100% and AUPRC of 0.87-1). In the multiple classification tasks, the diagnostic properties ranged from 38-100% for sensitivity and 67-100% for specificity. The discriminative performance in terms of AUPRC ranged from 0.57 to 1 in the five automated deep learning models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model showed an AUPRC of 0.47, with a sensitivity of 49% and a positive predictive value of 52%. The quality of the open-access datasets used in this study (including the lack of information about patient flow and demographics) and the absence of measurement for precision, such as confidence intervals, constituted the major limitation of this study. All models, except for the automated deep learning model trained on the multi-label classification task of the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art performing deep learning algorithms. The performance in the external validation study was low. The availability of automated deep learning may become a cornerstone for the democratization of sophisticated algorithmic modelling in healthcare as it allows the derivation of classification models without requiring a deep understanding of the mathematical, statistical and programming principles. Future studies should compare several application programming interfaces on thoroughly curated datasets

    Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

    Get PDF
    Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is usually used in screening settings, resulting in high false-positive and false-negative calls. To address this, we train a deep learning model to predict ci-DME from fundus photographs, with an ROC–AUC of 0.89 (95% CI: 0.87–0.91), corresponding to 85% sensitivity at 80% specificity. In comparison, retinal specialists have similar sensitivities (82–85%), but only half the specificity (45–50%, p < 0.001). Our model can also detect the presence of intraretinal fluid (AUC: 0.81; 95% CI: 0.81–0.86) and subretinal fluid (AUC 0.88; 95% CI: 0.85–0.91). Using deep learning to make predictions via simple 2D images without sophisticated 3D-imaging equipment and with better than specialist performance, has broad relevance to many other applications in medical imaging

    Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records

    Get PDF
    Early prediction of patient outcomes is important for targeting preventive care. This protocol describes a practical workflow for developing deep-learning risk models that can predict various clinical and operational outcomes from structured electronic health record (EHR) data. The protocol comprises five main stages: formal problem definition, data pre-processing, architecture selection, calibration and uncertainty, and generalizability evaluation. We have applied the workflow to four endpoints (acute kidney injury, mortality, length of stay and 30-day hospital readmission). The workflow can enable continuous (e.g., triggered every 6 h) and static (e.g., triggered at 24 h after admission) predictions. We also provide an open-source codebase that illustrates some key principles in EHR modeling. This protocol can be used by interdisciplinary teams with programming and clinical expertise to build deep-learning prediction models with alternate data sources and prediction tasks

    Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

    Get PDF
    BACKGROUND: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. OBJECTIVE: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. METHODS: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. RESULTS: We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. CONCLUSIONS: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways

    Clinically applicable deep learning for diagnosis and referral in retinal disease

    Get PDF
    The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting

    Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer

    No full text
    Advances in technical radiotherapy have resulted in significant sparing of organs at risk (OARs), reducing radiation-related toxicities for patients with cancer of the head and neck (HNC). Accurate delineation of target volumes (TVs) and OARs is critical for maximising tumour control and minimising radiation toxicities. When performed manually, variability in TV and OAR delineation has been shown to have significant dosimetric impacts for patients on treatment. Auto-segmentation (AS) techniques have shown promise in reducing both inter-practitioner variability and the time taken in TV and OAR delineation in HNC. Ultimately, this may reduce treatment planning and clinical waiting times for patients. Adaptation of radiation treatment for biological or anatomical changes during therapy will also require rapid re-planning; indeed, the time taken for manual delineation currently prevents adaptive radiotherapy from being implemented optimally. We are therefore standing on the threshold of a transformation of routine radiotherapy planning via the use of artificial intelligence. In this article, we outline the current state-of-the-art for AS for HNC radiotherapy in order to predict how this will rapidly change with the introduction of artificial intelligence. We specifically focus on delineation accuracy and time saving. We argue that, if such technologies are implemented correctly, AS should result in better standardisation of treatment for patients and significantly reduce the time taken to plan radiotherapy
    corecore