1,198 research outputs found

    Tunneling Via Individual Electronic States in Ferromagnetic Nanoparticles

    Full text link
    We measure electron tunneling via discrete energy levels in ferromagnetic cobalt particles less than 4 nm in diameter, using non-magnetic electrodes. Due to magnetic anisotropy, the energy of each tunneling resonance shifts as an applied magnetic field rotates the particle's magnetic moment. We see both spin-increasing and decreasing tunneling transitions, but we do not observe the spin degeneracy at small magnetic fields seen previously in non-magnetic materials. The tunneling spectrum is denser than predicted for independent electrons, possibly due to spin-wave excitations.Comment: 4 pages, 4 figures. Improved by comments from referees, to appear in Phys. Rev. Let

    Real-Time Imaging System using a 12-MHz Forward-Looking Catheter with Single Chip CMUT-on-CMOS Array

    Get PDF
    Forward looking (FL) imaging catheters would be an important tool for several intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) applications. Single chip capacitive micromachined ultrasonic transducer (CMUT) arrays fabricated on front-end CMOS electronics with simplified electrical interconnect have been previously developed for highly flexible and compact catheters. In this study, we present a custom built real time imaging system utilizing catheters with single chip CMUT-on-CMOS arrays and show initial imaging results. The fabricated array has a dual-ring structure with 64 transmit (Tx) and 56 receive (Rx) elements. The CMUT arrays fit on a 2.1 mm diameter circular region with all the required front-end electronics. The device operates at 12 MHz center frequency and has around 20 V collapse voltage. The single-chip system requires 13 external connections including 4 Rx channels and power lines. The electrical connections to micro cables in the catheter are made from the top side of the chip using polyimide flex tapes. The device is placed on a 6-Fr catheter shaft and secured with a medical grade silicon rubber. For real time data acquisition, we developed a custom design FPGA based imaging platform to generate digital control sequences for the chip and collect RF data from Rx outputs. We performed imaging experiments using wire phantoms immersed in water to test the real time imaging system. The system has the potential to generate images at 32 fps rate with the particular catheter. The overall system is fully functional and shows promising image performance

    The Academics Athletics Trade-off: Universities and Intercollegiate Athletics

    Get PDF
    This analysis focuses on several key issues in the Football Bowl Subdivision (FBS). The intrinsic benefits of athletic programs are discussed in the first section. Trends in graduation rates and academic performance among athletes and how they correlate with the general student body are discussed in the second section. Finally, an overview of the revenues and expenses of athletic department budgets are discussed in an effort to gain a better understanding of the allocation of funds to athletics. In spite of recent growth in revenues and expenses, the athletic department budget comprises on average only 5 percent of the entire university budget at an FBS school, though spending and revenues have increased dramatically in recent years. In the grand scheme of things, American higher education faces several other, arguably more pressing, areas of reform. However, athletics is a significant and growing dimension of higher education that warrants in-depth examination

    Evidence for the Decay Sigma+ -> p mu+ mu-

    Full text link
    We report the first evidence for the decay Sigma+ -> p mu+ mu- from data taken by the HyperCP experiment(E871) at Fermilab. Based on three observed events, the branching ratio is B(Sigma+ -> p,mu+,mu-) = [8.6 +6.6,-5.4(stat) +/-5.5(syst)] x 10**-8. The narrow range of dimuon masses may indicate that the decay proceeds via a neutral intermediate state, Sigma+ -> p P0, P0 -> mu+ mu-, with a P0 mass of 214.3 +/- 0.5 MeV/c**2 and branching ratio B(Sigma+ -> p P0; P0 -> mu+ mu-) = [3.1 +2.4,-1.(stat) +/-1.5(syst)] x 10**-8.Comment: As published in PR

    NaĂŻve and informed views on the nature of scientific inquiry in large-scale assessments: Two sides of the same coin or different currencies

    Get PDF
    Many models in the field of epistemic cognition conceptualize students' views as being on a continuum between the poles of naïve and informed views. Against this background, the aim of the present study was to find out whether views on the nature of scientific inquiry (NOSI views) should be conceptualized and quantitatively assessed in a more multiplistic manner, considering naïve and informed views in their own, separate dimensions. Based on a competence model defining three inquiry methods, we developed a Likert-scaled questionnaire containing 10 scales, each assessing one NOSI view. We administered the questionnaire to a sample of 802 students in the lower and upper levels of secondary school. Based on structural equation modeling, the analyses confirmed a 10-dimensional model, distinguishing between each naïve and informed views as the only adequate representation of the data. Latent class analysis and interview data revealed four profiles of NOSI views in the data, which differed with regard to their agreement or disagreement with different naïve and informed views. We interpret these findings as evidence that supports more multiplistic models, with relevance to conceptualizing, measuring, and fostering NOSI views. We derive future directions of nature of science and NOSI research linking basic and applied research using experimental studies. © 2019 The Author. Journal of Research in Science Teaching published by Wiley Periodicals, Inc

    Search for the Lepton-Number-Violating Decay Ξ−→pΌ−Ό−\Xi^- \to p \mu^- \mu^-

    Full text link
    A sensitive search for the lepton-number-violating decay Ξ−→pΌ−Ό−\Xi^-\to p \mu^-\mu^- has been performed using a sample of ∌109\sim10^9 Ξ−\Xi^- hyperons produced in 800 GeV/cc pp-Cu collisions. We obtain B(Ξ−→pΌ−Ό−)<4.0×10−8\mathcal{B}(\Xi^-\to p \mu^-\mu^-)< 4.0\times 10^{-8} at 90% confidence, improving on the best previous limit by four orders of magnitude.Comment: 9 pages, 5 figures, to be published in Phys. Rev. Let

    Ageing memory and glassiness of a driven vortex system

    Full text link
    Many systems in nature, glasses, interfaces and fractures being some examples, cannot equilibrate with their environment, which gives rise to novel and surprising behaviour such as memory effects, ageing and nonlinear dynamics. Unlike their equilibrated counterparts, the dynamics of out-of- equilibrium systems is generally too complex to be captured by simple macroscopic laws. Here we investigate a system that straddles the boundary between glass and crystal: a Bragg glass formed by vortices in a superconductor. We find that the response to an applied force evolves according to a stretched exponential, with the exponent reflecting the deviation from equilibrium. After the force is removed, the system ages with time and its subsequent response time scales linearly with its age (simple ageing), meaning that older systems are slower than younger ones. We show that simple ageing can occur naturally in the presence of sufficient quenched disorder. Moreover, the hierarchical distribution of timescales, arising when chunks of loose vortices cannot move before trapped ones become dislodged, leads to a stretched-exponential response.Comment: 16 pages, 5 figure

    Measurement of the Alpha Asymmetry Parameter for the Omega- to Lambda K- Decay

    Full text link
    We have measured the alpha parameter of the Omega- to Lambda K- decay using data collected with the HyperCP spectrometer during the 1997 fixed-target run at Fermilab. Analyzing a sample of 0.96 million Omega- to Lambda K^-, Lambda to p pi- decays, we obtain alpha_Omega*alpha_Lambda = [1.33+/-0.33(stat)+/-0.52(syst)] x 10^{-2}. With the accepted value of alpha_Lambda, alpha_Omega is found to be [2.07+/-0.51(stat)+/-0.81(syst)] x 10^{-2}.Comment: 5 pages, 4 figures, to be appeared as a Rapid Communication in Phys. Rev.

    Stochastic Hysteresis and Resonance in a Kinetic Ising System

    Full text link
    We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an oscillating field, using Monte Carlo simulations and analytical theory. Attention is focused on small systems and weak field amplitudes at a temperature below TcT_{c}. For these restricted parameters, the magnetization switches through random nucleation of a single droplet of spins aligned with the applied field. We analyze the stochastic hysteresis observed in this parameter regime, using time-dependent nucleation theory and the theory of variable-rate Markov processes. The theory enables us to accurately predict the results of extensive Monte Carlo simulations, without the use of any adjustable parameters. The stochastic response is qualitatively different from what is observed, either in mean-field models or in simulations of larger spatially extended systems. We consider the frequency dependence of the probability density for the hysteresis-loop area and show that its average slowly crosses over to a logarithmic decay with frequency and amplitude for asymptotically low frequencies. Both the average loop area and the residence-time distributions for the magnetization show evidence of stochastic resonance. We also demonstrate a connection between the residence-time distributions and the power spectral densities of the magnetization time series. In addition to their significance for the interpretation of recent experiments in condensed-matter physics, including studies of switching in ferromagnetic and ferroelectric nanoparticles and ultrathin films, our results are relevant to the general theory of periodically driven arrays of coupled, bistable systems with stochastic noise.Comment: 35 pages. Submitted to Phys. Rev. E Minor revisions to the text and updated reference
    • 

    corecore