1,535 research outputs found

    Ferrimagnetism of dilute Ising antiferromagnets

    Get PDF
    It is shown that nearest-neighbor antiferromagnetic interactions of identical Ising spins on imbalanced bipartite lattice and imbalanced bipartite hierarchical fractal result in ferrimagnetic order instead of antiferromagnetic one. On some crystal lattices dilute Ising antiferromagnets may also become ferrimagnets due to the imbalanced nature of the magnetic percolation cluster when it coexists with the percolation cluster of vacancies. As evidenced by the existing experiments on FepZn1pF2Fe_pZn_{1-p}F_2, such ferrimagnetism is inherent property of bcc lattice so thermodynamics of these compounds at low pp can be similar to that of antiferromagnet on imbalanced hierarchical fractal.Comment: 6 pages, 4 figure

    The Academics Athletics Trade-off: Universities and Intercollegiate Athletics

    Get PDF
    This analysis focuses on several key issues in the Football Bowl Subdivision (FBS). The intrinsic benefits of athletic programs are discussed in the first section. Trends in graduation rates and academic performance among athletes and how they correlate with the general student body are discussed in the second section. Finally, an overview of the revenues and expenses of athletic department budgets are discussed in an effort to gain a better understanding of the allocation of funds to athletics. In spite of recent growth in revenues and expenses, the athletic department budget comprises on average only 5 percent of the entire university budget at an FBS school, though spending and revenues have increased dramatically in recent years. In the grand scheme of things, American higher education faces several other, arguably more pressing, areas of reform. However, athletics is a significant and growing dimension of higher education that warrants in-depth examination

    How a spin-glass remembers. Memory and rejuvenation from intermittency data: an analysis of temperature shifts

    Full text link
    The memory and rejuvenation aspects of intermittent heat transport are explored theoretically and by numerical simulation for Ising spin glasses with short-ranged interactions. The theoretical part develops a picture of non-equilibrium glassy dynamics recently introduced by the authors. Invoking the concept of marginal stability, this theory links irreversible `intermittent' events, or `quakes' to thermal fluctuations of record magnitude. The pivotal idea is that the largest energy barrier b(tw,T)b(t_w,T) surmounted prior to twt_w by thermal fluctuations at temperature TT determines the rate rq1/twr_q \propto 1/t_w of the intermittent events occurring near twt_w. The idea leads to a rate of intermittent events after a negative temperature shift given by rq1/tweffr_q \propto 1/t_w^{eff}, where the `effective age' twefftwt_w^{eff} \geq t_w has an algebraic dependence on twt_w, whose exponent contains the temperatures before and after the shift. The analytical expression is verified by numerical simulations. Marginal stability suggests that a positive temperature shift TTT \to T' could erase the memory of the barrier b(tw,T)b(t_w,T). The simulations show that the barrier b(tw,T)b(tw,T)b(t_w,T') \geq b(t_w,T) controls the intermittent dynamics, whose rate is hence rq1/twr_q \propto 1/t_w. Additional `rejuvenation' effects are also identified in the intermittency data for shifts of both signs.Comment: Revised introduction and discussion. Final version to appear in Journal of Statistical Mechanics: Theory and Experimen

    VLBI for Gravity Probe B. II. Monitoring of the Structure of the Reference Sources 3C 454.3, B2250+194, and B2252+172

    Get PDF
    We used 8.4 GHz VLBI images obtained at up to 35 epochs between 1997 and 2005 to examine the radio structures of the main reference source, 3C 454.3, and two secondary reference sources, B2250+194 and B2252+172, for the guide star for the NASA/Stanford relativity mission Gravity Probe B (GP-B). For one epoch in 2004 May, we also obtained images at 5.0 and 15.4 GHz. The 35 8.4 GHz images for quasar 3C 454.3 confirm a complex, evolving, core-jet structure. We identified at each epoch a component, C1, near the easternmost edge of the core region. Simulations of the core region showed that C1 is located, on average, 0.18 +- 0.06 mas west of the unresolved "core" identified in 43 GHz images. We also identified in 3C 454.3 at 8.4 GHz several additional components which moved away from C1 with proper motions ranging in magnitude between 0.9c and 5c. The detailed motions of the components exhibit two distinct bends in the jet axis located ~3 and ~5.5 mas west of C1. The spectra between 5.0 and 15.4 GHz for the "moving" components are steeper than that for C1. The 8.4 GHz images of B2250+194 and B2252+172, in contrast to those of 3C 454.3, reveal compact structures. The spectrum between 5.0 and 15.4 GHz for B2250+194 is inverted while that for B2252+172 is flat. Based on its position near the easternmost edge of the 8.4 GHz radio structure, close spatial association with the 43 GHz core, and relatively flat spectrum, we believe 3C 454.3 component C1 to be the best choice for the ultimate reference point for the GP-B guide star. The compact structures and inverted to flat spectra of B2250+194 and B2252+172 make these objects valuable secondary reference sourcesComment: Accepted for publication in the Astrophysical Journal Supplement Seri

    A Cure for HIV Infection: "Not in My Lifetime" or "Just Around the Corner"?

    Get PDF
    With the advent and stunning success of combination antiretroviral therapy (ART) to prolong and improve quality of life for persons with HIV infection, HIV research has been afforded the opportunity to pivot towards studies aimed at finding "a cure." The mere idea that cure of HIV might be possible has energized researchers and the community towards achieving this goal. Funding agencies, both governmental and private, have targeted HIV cure as a high priority; many in the field have responded to these initiatives and the cure research agenda is robust. In this "salon" two editors of Pathogens and Immunity, Michael Lederman and Daniel Douek ask whether curing HIV is a realistic, scalable objective. We start with an overview perspective and have asked a number of prominent HIV researchers to add to the discussion

    Equilibrium random-field Ising critical scattering in the antiferromagnet Fe(0.93)Zn(0.07)F2

    Full text link
    It has long been believed that equilibrium random-field Ising model (RFIM) critical scattering studies are not feasible in dilute antiferromagnets close to and below Tc(H) because of severe non-equilibrium effects. The high magnetic concentration Ising antiferromagnet Fe(0.93)Zn(0.07)F2, however, does provide equilibrium behavior. We have employed scaling techniques to extract the universal equilibrium scattering line shape, critical exponents nu = 0.87 +- 0.07 and eta = 0.20 +- 0.05, and amplitude ratios of this RFIM system.Comment: 4 pages, 1 figure, minor revision

    Stochastic Hysteresis and Resonance in a Kinetic Ising System

    Full text link
    We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an oscillating field, using Monte Carlo simulations and analytical theory. Attention is focused on small systems and weak field amplitudes at a temperature below TcT_{c}. For these restricted parameters, the magnetization switches through random nucleation of a single droplet of spins aligned with the applied field. We analyze the stochastic hysteresis observed in this parameter regime, using time-dependent nucleation theory and the theory of variable-rate Markov processes. The theory enables us to accurately predict the results of extensive Monte Carlo simulations, without the use of any adjustable parameters. The stochastic response is qualitatively different from what is observed, either in mean-field models or in simulations of larger spatially extended systems. We consider the frequency dependence of the probability density for the hysteresis-loop area and show that its average slowly crosses over to a logarithmic decay with frequency and amplitude for asymptotically low frequencies. Both the average loop area and the residence-time distributions for the magnetization show evidence of stochastic resonance. We also demonstrate a connection between the residence-time distributions and the power spectral densities of the magnetization time series. In addition to their significance for the interpretation of recent experiments in condensed-matter physics, including studies of switching in ferromagnetic and ferroelectric nanoparticles and ultrathin films, our results are relevant to the general theory of periodically driven arrays of coupled, bistable systems with stochastic noise.Comment: 35 pages. Submitted to Phys. Rev. E Minor revisions to the text and updated reference

    Analysing and controlling the tax evasion dynamics via majority-vote model

    Full text link
    Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on simple square lattices, Voronoi-Delaunay random lattices, Barabasi-Albert networks, and Erd\"os-R\'enyi random graphs. In the order to analyse and to control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhod of the noise critical qcq_{c}. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust and can be reproduced also through the nonequilibrium MVM on various topologies.Comment: 18 pages, 7 figures, LAWNP'09, 200

    Magnetization switching in a Heisenberg model for small ferromagnetic particles

    Full text link
    We investigate the thermally activated magnetization switching of small ferromagnetic particles driven by an external magnetic field. For low uniaxial anisotropy the spins can be expected to rotate coherently, while for sufficient large anisotropy they should behave Ising-like, i.e., the switching should then be due to nucleation. We study this crossover from coherent rotation to nucleation for the classical three-dimensional Heisenberg model with a finite anisotropy. The crossover is influenced by the size of the particle, the strength of the driving magnetic field, and the anisotropy. We discuss the relevant energy barriers which have to be overcome during the switching, and find theoretical arguments which yield the energetically favorable reversal mechanisms for given values of the quantities above. The results are confirmed by Monte Carlo simulations of Heisenberg and Ising models.Comment: 8 pages, Revtex, 11 Figures include

    Extraction of the Spin Glass Correlation Length

    Full text link
    The peak of the spin glass relaxation rate, S(t)=d{-M_{TRM}(t,t_w)}/H/{d ln t}, is directly related to the typical value of the free energy barrier which can be explored over experimental time scales. A change in magnetic field H generates an energy E_z={N_s}{X_fc}{H^2} by which the barrier heights are reduced, where X_{fc} is the field cooled susceptibility per spin, and N_s is the number of correlated spins. The shift of the peak of S(t) gives E_z, generating the correlation length, Ksi(t,T), for Cu:Mn 6at.% and CdCr_{1.7}In_{0.3}S_4. Fits to power law dynamics, Ksi(t,T)\propto {t}^{\alpha(T)} and activated dynamics Ksi(t,T) \propto {ln t}^{1/psi} compare well with simulation fits, but possess too small a prefactor for activated dynamics.Comment: 4 pages, 4 figures. Department of Physics, University of California, Riverside, California, and Service de Physique de l'Etat Condense, CEA Saclay, Gif sur Yvette, France. To appear in Phys. Rev. Lett. January 4, 199
    corecore