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It is shown that nearest-neighbor antiferromagnetic interactions of identical Ising spins on imbalanced 

bipartite lattice and imbalanced bipartite hierarchical fractal result in ferrimagnetic order instead of anti-

ferromagnetic one. On some crystal lattices dilute Ising antiferromagnets may also become ferrimagnets due to 

the imbalanced nature of the magnetic percolation cluster when it coexists with the percolation cluster of 

vacancies. As evidenced by the existing experiments on FepZn1–pF2, such ferrimagnetism is inherent property of 

bcc lattice so thermodynamics of these compounds at low p can be similar to that of antiferromagnet on 

imbalanced hierarchical fractal. 

PACS: 75.50.Ee Antiferromagnetic materials; 

75.50.Kz Magnetic transitions. 
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The system of the identical Ising spins on the sites of 

some crystalline lattices with the nearest-neighbor antifer-

romagnetic (AF) exchange may have magnetized ground 

states. In such states there would be antiparallel neighbor-

ing spins, as interaction dictates, but the whole numbers of 

up-spins and down-spins would differ. One such 2d  lat-

tice is shown in Fig. 1(a). Here two sublattices with paral-

lel up and down spins in the ground state are shown by 

filled and empty circles correspondingly. We see that in 

the unit cell there are one filled circle and two empty ones 

so we get 1/3  magnetizations in two globally-reversed 

ground states for nearest-neighbor AF on this lattice. Thus 

this AF model has a couple of ferrimagnetic ground states 

with both staggered = ( )/2A BL S S  and homogene-

ous = (2 )/3A BM S S  magnetizations. 

One can easily show that this ordering persists up to fi-

nite .cT  Summing the Gibbs function over spins on 

sublattice A (empty circles) we get the Gibbs distribution 

for the spins on the sublattice B having effective ferromag-

netic Hamiltonian. Indeed, for each link with AS  spin we 

have (J is AF exchange) 

= 1

exp ( ) / = 2cosh ( ) /A B B B B

SA

S S S J T S S J T  

 = 2exp ( 1) , 2 ln cosh 2 / .B B B BK S S K J T   

Hence, the ordering of BS  spins is described by the ferro-

magnetic Ising model on the square lattice, so 0BS  

for 
1

> ln ( 2 1)
2

BK  [1] or  

 < = 2 / ln ( 2 1 2( 2 1)).cT T J   

As BS  is a linear combination of L  and M, the ordered 

phase is a ferrimagnetic one. This implies that homogene-

ous magnetic field H  has a part conjugated with the order 

parameter so magnetic susceptibility diverges at cT  when 

= 0H  and the transition becomes smeared at finite .H  

Thus we have a simple example showing that nearest-

neighbor AF interaction of identical Ising spins may result 

in the macroscopic ferrimagnetic order. This is in apparent 

distinction with conventional ferrimagnets having several 

different magnetic moments in a cell. It may look rather 

exotic in the realm of real crystals yet such situation can be 

frequent in disordered Ising AF, first of all, in dilute Ising 

AF on bipartite lattices. These lattices can be divided in 

two subsets of sites, A and B, such that all bonds are of the 

A–B type, i.e., there are no bonds inside A and B subsets 

[2]. Apparently, the Ising AF on such lattice is non-

Fig. 1. Examples of imbalanced bipartite graphs with different 

numbers of sites in sublattices A (open circles) and B (filled cir-

cles), >A BN N . (a) — fragment of regular 2d  lattice, dotted line 

shows the unit cell; (b, c, d) — clusters of dilute square lattice. In 

the ground state short-range Ising AF on them would have parallel 

spins on A and B sublattices and, hence, a nonzero magnetization. 
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frustrated having all spins up on sublattice A and down on 

sublattice B or vice versa in its two degenerate ground 

states. Their magnetizations are 

 
1

= = , < 1.
1

A B B

A B A

N N N
m

N N N
  

Here AN  and BN  are the numbers of sites in A and B 

sublattices and we choose < 1  for definiteness. 

Seemingly, all known nonfrustrated AF crystals with 

just one sort of magnetic ions have bipartite lattices that 

are the balanced ones, that is with = 1  and purely AF 

ground states, while Fig. 1(a) shows the imbalanced bipar-

tite lattice with < 1  ( = 0.5).  Yet the dilution of bal-

anced bipartite lattices results in appearance of a number of 

isolated clusters, mostly with < 1,  those with = 1  be-

ing the rare exceptions. Figures 1(b), (c), (d) show the im-

balanced clusters on the square lattice. So at = 0T  and 

arbitrarily small magnetic field dilute bipartite AF must 

show nonzero magnetization due to the presence of such 

imbalanced finite clusters. This circumstance was first no-

ticed by Néel [3]. Still it stays unnoticed that for some 

concentrations of magnetic ions p  the giant percolation 

cluster may also have the average imbalance ratio < 1.p  

Indeed, in finite sample the role of percolation cluster 

belong to that with the largest number of sites and very 

probably it is imbalanced, as most of them. However, in 

the thermodynamic limit ( N ) p  will tend to unity 

if there are only finite clusters of vacancies. Apparently, 

such finite clusters cannot make infinite lattice imbalanced 

as for every cluster deleting unequal number of sites from 

A and B sublattices there exists (with the same probability) 

the shifted cluster of the same form which restores the bal-

ance. Thus at 1 < <1cp p  the imbalanced percolation 

cluster can only exist as a finite-size effect. Meanwhile, at 

< <1c cp p p  there is infinite percolation cluster of va-

cancies to which this argument does not apply. Hence, here 

< 1p  may also hold in the N  limit in some crystal 

lattices. Then the ground state magnetization of dilute AF 

in this interval will be 

 

1

0

11
( = 0) = ( ) .

1 1

p
p p

p

m H W d   

Here ( )pW  is the imbalance distribution function of fi-

nite clusters. Now it seems that neither ( )pW  nor p  are 

known for the crystal lattices. So to find them is quite rele-

vant task for the physics of dilute short-range AF. 

The magnetization of finite clusters vanishes at finite 

temperatures, but that of the imbalanced percolation cluster 

would persist up to a finite cT  and M L  at all T  due to 

its geometrical origin. Then macroscopic features of dilute 

AF in a field (DAFF) would be those of ordinary 

ferromagnet in spite of the presence of antiparallel neigh-

boring spins in the ordered phase. In such a case, the map-

ping of this model onto random-field Ising magnet (RFIM) 

[4] would be no longer valid as it suggests purely AF tran-

sition in DAFF. This possibility of AF order breaking is 

missed in Ref. 4 which is a consequence of the mean-field 

treatment of homogeneous magnetization. 

The evidences in favor of DAFF ferrimagnetism can be 

found in experiments on several dilute Ising AF with 

<1 cp p  showing the remanent magnetization with the 

usual order-parameter behavior [5–9] and prominent peak 

in temperature dependence of magnetic susceptibility 

which appears in low fields as a result of dilution and be-

comes gradually smeared in higher fields [8,9]. 

We should note that on the lattices having perfectly bal-

anced percolation cluster with = 1p  DAFF also have a 

ferrimagnetic phase in its ground state. The difference with 

the imbalanced case is that it appears above some finite 

critical field ( )AFH p  while this field is zero if < 1.p  

The schematic ground state phase diagrams are shown in 

Fig. 2. The validity of these pictures follows from quite 

simple considerations. Let us consider the perfectly bal-

anced AF percolation cluster. As it necessary has some im-

balanced (magnetized) parts, the field will induce the ener-

gy-reducing global flipping of their spins if the magnetic 

Fig. 2. (Color online) Schematic ground state –H p  phase dia-

grams of dilute AF. =1p  for all p  (a), <1p  for < 1 cp p  

(b). The lines between phases are defined by ( )AFH p  and 

( )FH p  discussed in text. In the improper ferrimagnetic regions 

sharp AF transition is preserved at finite cT  while it becomes 

smeared ferrimagnetic one at > 0H  in genuine ferrimagnetic 

region in (b). 
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moment M  of the part points opposite to the field and H  

is greater than ( / ) .B M J  Here B  is the number of AF 

bonds connecting the given part with the rest of percolation 

cluster, J  is AF exchange. First the large clusters with 

small /B M  ratio will be flipped in low fields while the 

field growth will induce the flipping of smaller and smaller 

ones. At last the remaining single spins flip along the field 

at =H zJ  (z is the lattice coordination number). The cor-

responding jumps of sublattice magnetizations are seen in 

the numerical study of the ground state of 3d  (simple cu-

bic) DAFF with p  as large as 0.9 and > 2H J  [10]. 

Apparently, this process results in appearance of a non-

zero magnetization of percolation cluster in fields above 

some ( )AFH p  and vanishing of its staggered magnetiza-

tion above some greater field ( )FH p . So the ground state 

at ( ) < < ( )AF FH p H H p  is ferrimagnetic. Yet in this 

case M  appears at cT  as a secondary order parameter 
2M L  and here sharp AF transition is preserved as well 

as DAFF–RFIM mapping. So, we may call this phase “im-

proper ferromagnetic” to distinguish it from the genuine 

ferrimagnetic one in Fig. 2(b). 

Still the improper ferrimagnetic ground state would 

cause a drastic change in the dynamics of AF phase. This 

is the consequence of huge degeneracy of the ferrimagnetic 

ground state as at rational /H J  there can be a huge 

amount of parts of the percolation cluster with 

/ = /H J B M  so their flipping does not change the energy. 

This degeneracy is explicitly demonstrated in numerical 

studies of realistic DAFF systems [10,11]. At finite T  this 

results in many (nearly) degenerate minima of thermody-

namic potential so the system can be trapped in each of 

them, depending on the previous history of T  and H  var-

iations. The particular manifestation of these phenomena is 

the difference between field-cooled and zero-field-cooled 

thermodynamic parameters. Apparently, it would be also 

present in the ferrimagnetic phase of imbalanced DAFF 

right down to = 0.H  

Concerning the behavior of ( )AFH p  and ( )FH p  

in Fig. 2 we can note that it is quite apparent that 

(1) = (1) =AF FH H zJ  while their diminishing to zero at 

= cp p  in Fig. 2(a) is the consequence of sparse structure 

of percolation cluster near cp . Here it is divided into 

loosely connected parts with / 0B M  so their flipping 

fields also go to zero resulting in ( ) = ( ) = 0.AF c F cH p H p  

In Fig. 2(b) ( )AFH p  seized to exist at =1 cp p  when, 

according to our surmise, p  becomes less than 1 in 

some lattices. 

The notion of ( )AFH p  and ( )FH p  behavior one can 

get from the results of extensive numerical studies of 

DAFF ground state on simple cubic and bcc lattices [11]. 

Here the boundaries of the so called “domain state” are 

determined. In this state the percolation cluster of the 

flipped spins coexists with that of unflipped ones. Its upper 

boundary coincides with ( )FH p  while the lower one can 

be somewhat higher than ( ),AFH p  yet its behavior for the 

simple cubic lattice [11] resembles that in Fig. 2(a). So, 

most probably, this lattice has = 1p  for all p . The re-

sults for bcc lattice are less conclusive, here the percolation 

cluster of flipped spins can appear at rather low fields, de-

pending on the boundary conditions and disorder realiza-

tion [11]. This makes bcc lattice a valid candidate for hav-

ing < 1p  (and ( ) = 0)AFH p  at some > .cp p  

To get some notion of the DAFF thermodynamics in the 

ferrimagnetic phase which may result from < 1p  at 

<1 cp p  we consider here the nearest-neighbor AF on 

the simplest hierarchical lattice, imitating the percolation 

cluster with fractal dimension = 2d  and =1/3.  As well, 

it may describe qualitatively large planar aggregates of AF 

particles or disordered AF thin films which may have the 

imbalanced structure of a set of magnetic ions. The model 

also exhibits a number of field-induced ground state transi-

tions marked by the magnetization jumps which are dis-

cussed above. 

Low-field thermodynamics of hierarchical 

antiferromagnet 

We consider the short-range Ising AF on the simplest 

“diamond” hierarchical lattice [12]. Its building process 

is shown in Fig. 3. On the nth level of hierarchy the lat-

tice has nN  sites, 
2

= (4 2),
3

n
nN  see Ref. 13. The co-

ordination numbers of the sites are the powers of 2: 

= 2, 4, 8, ...z  At all levels of the hierarchy the lattice is 

bipartite and for > 0n  the sites with coordination num-

ber = 2z  constitutes the sublattice A (open circles in 

Fig. 3) while the others belong to the sublattice B (filled 

circles), , , .A n B nN N  At the nth level 1
, = 2 4n

A nN  for 

> 0n  [13], so, 1
, ,= ( )/ = (1 2 4 )/3.n

n n A n A nN N N  

We are interested in the thermodynamic limit of infinite 

levels of hierarchy. In this limit =1/3  and fractal dimen-

sion = 2d  [13]. 

For the Ising spins = 1iS  placed on the sites of this 

lattice we consider the AF Hamiltonian  

 

< , >

= ,i j A i B j

i A j B i A j B

J S S H S H S  (1) 

where < , >i A j B  means the summation over nearest 

neighbors and different fields for the sublattices are intro-

Fig. 3. Construction of hierarchical lattice. It is bipartite at all 

levels. Different circles designate its partitioning, open circles  

sublattice A, filled circles sublattice B, .A BN N  

n = 0 n = 1 n = 2
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duced. This allows to find the average magnetizations of 

each sublattice and the order parameter for the transition. 

Homogeneous field corresponds to = = .A BH H H  

The usual way to get the partition function of the model 

is through the recursion relations for partial partition func-

tions at different levels of hierarchy ( , )nZ S S  having 

fixed values of the outmost left and right spins S  and S  

[12]. These relations read 

 

2

1
1 1 1

= 11

( , ) = ( , )e ( , ) ,
h Sn

n n n

S

Z S S Z S S Z S S  (2) 

= / ,n nh H T  0 = AH H  and = ,n BH H  1.n  The initial 

condition for them is 

 0 ( , ) = e , = / .KSSZ S S K J T  (3) 

Using the representation 

 
1

( , ) = exp [ ( )( )],
2

n n n n nZ S S C u SS v h S S   

we get from Eqs. (2), (3) 

 0 0 0= 2 , = , = 0,Au K v h C  (4) 

 
2 2

1 = 2ln cosh ln (1 tanh tanh ),n n n nu u u v   

 1
1 1(tanh tanh )= 2 2 ,2 tanh n nn n n nu vv v h h   

 1 1= 4 4ln(2cosh ).n n n nC C u v   

The last of Eqs. (4) gives for > 0n  

 
1

0

=0

= 4 4 [ ln (2cosh )]
n

n n l
n n l l

l

C u u u v   

so the nth level free energy per spin is  

 
( )

,

= ln ( , )e =
h S SB

n n
n S S

T
F Z S S

N
  

 
1

=0

3 3
4 [ ln (2cosh )] (1/ ).

4 2

n
l

l l n

l

T u v J O N  (5) 

At = 0nH  the model has phase transition at 

= 0.609cK K  being the solution to the equation 

= lncosh2c cK K . = 2c cu K  is the stationary point of the 

zero-field equations, 1 = 2lncosh ,n nu u  = 0.nv  In the 

paramagnetic phase at < cK K  0nu  for ,n  while 

in the ordered phase at > cK K  .nu  According to 

above considerations the ground states of the model have 

magnetizations (1/2),  so we may expect that the ordered 

phase is ferrimagnetic. To show this we consider Eqs. (4) at 

 0 < ( )/ 1, .c c nT T T h  (6) 

In this case nu  and nv  can be found approximately in the 

three regions of n: 

1) 1 , , 1,n c c nn u u u v  

 
1

1( ),n
n c cu u u u  (7) 

 
1(2 )

, = ( 1) ,
1

n
B

n B A

h h
v h h h  (8) 

 1 = 2lncosh2 , = 2tanh2 1.68.cu K K   

The value of  is defined by  

 1= 2 , = ,c
c

c

u u
u u

u
 (9) 

while | | 1nv  requires 

 
ln (2 )/ln| | (2 ) =| | 1.h h  (10) 

2) < ,n  1 | |n nu v  

 
1

1

=

2 2 ln 2cosh ,
n

n n k
n c k

k

u u v  (11) 

 4 ,
3 3

nB B
n

h h
v v  (12) 

 
1

ln (2 )/ln

(2 )
= .

(1 ) (1 )(2 )

h h
v  (13) 

The value of  is defined by the equation = | | .u v  

As 

1
1

=

2 2 ln 2cosh 4k k
c

k

u u v

2 2( ln 2) 4 ,cu v      4v v , we get  

 

2( ln 2)2 ( ln 2)
2 = , = = .c cu u

u v
v v

 (14) 

3) , | | 1, 0, 2 .n
n n nn v u v v  (15) 

Note that in the sums we consider the large numbers  

and  as integers neglecting its fractional parts. 

Using the above approximations for nu  and nv  we can 

find from Eq. (5) free energy in the thermodynamic limit 

near the transition point in a small field (cf. Eqs. (6), (10)). 

Thus, dividing the sum in (5) in three parts and = 0n  term, 

 
4

= ln 2cosh ,
3

A
F

h
T

  

we get 
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22

2 2
=1 =1

= 4 ( ln 2) 1
4 22(1 ) (2 )

n n
n

c c

n n

h
u u  

 

22

2

1 4 2
(ln 2 ) 2 ln 2 1 ,

3 4 3 4 22(4 )(1 )
c c c

h
u u u    

 
1

1 1

= 1 = 1 = = 1

= (2 4 ln 2cosh ) 4 2 ln 2cosh (2 4 ln 2cosh )
n

n n n n k n n
c n k c n

n n k n

u v v u v   

 

=

(4 2 ) ln 2cosh 4 2 4 4 ln 2cosh 4 ln 2cosh 4 (2 ln 2),k k
k c c

k

v u u v v u   

 

= 1

4 4 = 4 .n
n

n

v v v   

_______________________________________________

Here we used 1,v  1v  Eqs. (7), (8,) (11), 

(12), (15) and the relation following from Eq. (11), 

 

1
1

=

2 ln 2cosh = 2 4 .k
k c

k

v u u   

Finally we have from Eqs. (5), (9), (13), (14) 

2 2/ /2 ln2 ,c c cF T K s a b h c h  (16) 

1
= ln 2 2 0.34,

4
c cs K     

5 2
= 2 ln 2 0.17,

4
ca K  

3
= 0.13,

4(2 )(1 )
b      

2

3
= 0.015.

8(4 )(1 )
c  

ln 4
= 2 0.67,

ln
      

ln 4 ln (2 )
= 0.16,

ln
 

 
2ln (2 ) ln 4

= 2.35.
ln

 (17) 

In homogeneous field =h h  (cf. Eq. (8)) so F  in 

Eq. (16) has the standard scaling form of a ferromagnet 

with spontaneous magnetization m  and divergent 

susceptibility .  This expression is valid at 

0 < 1,  ,h  cf. Eq. (10). Scaling indices (17) 

obey the usual relation 2 = 2.  Negative  means 

that specific heat is finite at the transition point and has a 

cusp at .cT  Note also that cs  is the entropy at the transi-

tion point. So this AF system looks like genuine 

ferromagnet, even featuring the absence (smearing) of 

transition in a finite field. The last is evident as the nontriv-

ial stationary point of finite-field recursion relations (4) 

cannot be reached from any initial conditions. 

Yet the dependence of F  on h  from Eq. (8) shows that 

true order parameter for the transition is a linear combina-

tion of =A i

i A

M S  and =B i

i B

M S  conjugate with 

= ( 1) .B AH H H  To distinguish the order parameter 

in the Hamiltonian (1) we perform a coordinate rotation in 

2d  space of vectors = ( , )A BH HH  and = ( , )A BM MM  

to bring the term MH  in (1) to the form 

= MH M HMH  where 

 
2 2

( 1) ( 1)
= , = ,

1 ( 1) 1 ( 1)

B A B AM M M M
M M   

 = ( 1) .B AH H H   

Thus M  is the order parameter while M  and H  are 

noncritical variables. Hence, = 0M  at 0H  so the 

spontaneous magnetic moments of the sublattices obey the 

relation = 1A BM M . Then for the spontaneous 

magnetizations = /m M N  ( = , )A B  we have  

 = ( 1) 0.9 .A B Bm m m   

This differs from the ground state relation = .A Bm m  We 

may suggest that this is a consequence of critical fluctua-

tions diminishing Am  more strongly than Bm  as all sites 

of sublattice A have the lowest coordination number 

= 2.Az  To some extent this effect would be present in all 

dilute AF on imbalanced bipartite graphs since the 

sublattice A with larger amount of spins would necessary 

have lower average coordination number 

= / < = / .A A B Bz C N z C N  Here C  is the number of bonds 

and we used the fact that all bonds are of A–B type. Thus 

=A Bz z  so the lower  the stronger can be the fluctua-

tion-induced disbalance between Am  and Bm  near .cT  At 

= 1  this effect vanishes so its observation in neutron-

diffraction experiments can certify the onset of imbalance 

in the magnetic percolation cluster. 
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Ground state transitions 

Here we assume = = .A BH H H  At = 0T  we define 

0
= lim ,n n

T
u Tu  

0
lim ,= nn

T
Tvv  

0
lim ,=

T
FE  to obtain from 

Eqs. (4), (5) 

 0 0= 2 , = ,u J v H   

 1 = 2( ) ( ),n n n n nu u v u v  (18) 

 1 = 2 2min ( , )sgn ( ) ,n n n n n nv v u v u v H  (19) 

 

=1

(4/3) = 4 ( ) ,n
n n

n

E H u v   

 in Eq. (18) is Heaviside’s step function. Solving 

Eqs. (18), (19), we get  

 
1

=1

(4/3) = 4 2 ,n n

n

E H H J   

 1

=1

3
= = 1 4 sgn ( 2 ) .

4

n n

n

E
m H J

H
  

So at 2kH J   

 
1= 2 (2 ) (1 2 4 ) ( 2 ),rm J H H J   

where 2=[log ( / )]r H J  is an integer part of 2( / ).log H J  

At = 2 ,r
rH J  2,r  we have = 1 6 4 .r

rm  Field de-

pendence of the ground state magnetization is shown in 

Fig. 4. Due to the imbalance ratio =1/3  the system has 

spontaneous magnetization = 1/2m  at 0.H  Unfortu-

nately, the data on the percolation cluster magnetization on 

cubic and bcc lattices are totally absent in Ref. 11 which 

deprives us of the opportunity to decide if there is the im-

balance in real 3d  percolation clusters at < <1 .c cp p p  

The jumps at = 2r
rH J  result from the flipping along 

the field of single spins in sublattice B having the coordi-

nation number 2 .r  As we discussed above in dilute crys-

talline lattices there are many more jumps appearing at 

rational values of /H J  where flipping of the magnetized 

parts of percolation cluster takes place [10]. Such jumps 

were observed in low-T experiments in FepZn1–pF2 [14]. 

Discussion and conclusions 

The decades of experimental investigations of dilute 

Ising AF have shown that DAFF–RFIM correspondence 

works reasonably well at low dilution and low fields [15]. 

Meanwhile the field-induced rounding of the transition 

appears at lower p  which is impossible in the case of the 

AF ordered phase. One explanation assumes that this is 

nonequilibrium effect due to the pinning of AF domain 

walls by the vacancies which results in very slow relaxa-

tion to the equilibrium AF structure [16]. Also one may 

suggest that AF transition transforms at lower p  into a 

spin-glass one [15,17]. 

Here we argue that one more reason for the vanishing 

of AF transition could be the imbalance of percolation 

cluster which makes transition ferrimagnetic at = 0H  and 

smeared at finite fields. Just these phenomena were found 

in FepZn1–pF2 [5–7] and several other dilute AFs [8,9]. 

Also the inspection of neutron-diffraction data on 

metastability and domain formation in FepZn1–pF2 family 

[18] makes authors to conclude that AF order vanishes 

right at =1 .cp p  AF region in the H–p phase diagram of 

these compounds in Ref. 18 is quite similar to that in Fig. 

2(b). Thus our surmise of possible imbalance of percola-

tion cluster at <1 cp p  seems to be true for bcc lattice. 

This implies that qualitative features of the considered 

here model could apply to the thermodynamics of 

FepZn1–pF2 compounds with vacancies’ percolation. They 

are a small scaling index of remanent magnetization, rather 

high index ,  large negative  and disbalance in the 

sublattice magnetizations near .cT  But to observe these 

features of ferrimagnetic transition the measurements in 

ultra-low fields (same as in Refs. 5–9) are needed to avoid 

its smearing. Also the irreversibility should be taken into 

account as the theoretical results refer only to the most 

stable state, which seemingly is a field-cooled one in the 

ferrimagnetic phase. 

Now we do not know on which lattices DAFF would 

also have the phase diagram of Fig. 2(b). Moreover, the 

exact form of ( )AFH p  and ( )FH p  is not known for the 

variety of crystalline lattices of the known easy-axes 

antiferromagnets. Yet investigation of DAFF ground state 

in Ref. 11 shows that their determination is feasible with 

modern numerical methods. Such studies and further ex-

periments revealing the details of low-T and low-H beha-

vior of magnetization may help to elucidate the nature of 

transition in nearest-neighbor dilute AF. 

Author gratefully acknowledges useful discussions with 

V.P. Sakhnenko and M.P. Ivliev. 
Fig. 4. Field dependence of the ground state magnetization. 
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