504 research outputs found

    The National Security Agency\u27s Domestic Spying Program: Framing the Debate

    Get PDF
    On Friday, December 16, 2005, the New York Times reported that President George W. Bush had secretly authorized the National Security Agency (NSA) to conduct warrantless surveillance of Americans\u27 telephone and e-mail communications as part of an effort to obtain intelligence about future terrorist activity.\u27 The Times report was based on leaks of classified information, presumably by NSA officials concerned about the legality of the program. The Times reported that at the President\u27s request it had delayed publication of the story for more than a year. The Indiana Law Journal reprinted four documents that, taken together, set forth the basic arguments concerning the lawfulness of the secret NSA surveillance program. The debate outlined by the four documents raises important issues about statutory interpretation in the face of claims of constitutional conflict, executive power during times of war, fundamental privacy rights of Americans, and ultimately, the rule of law in the war on terror

    Plasmon-enhanced electron-phonon coupling in Dirac surface states of the thin-film topological insulator Bi2Se3

    Get PDF
    Raman measurements of a Fano-type surface phonon mode associated with Dirac surface states (SS) in Bi2Se3 topological insulator thin films allowed an unambiguous determination of the electron-phonon coupling strength in Dirac SS as a function of film thickness ranging from 2 to 40 nm. A non-monotonic enhancement of the electron-phonon coupling strength with maximum for the 8 - 10 nm thick films was observed. The non-monotonicity is suggested to originate from plasmon-phonon coupling which enhances electron-phonon coupling when free carrier density in Dirac SS increases with decreasing film thickness and becomes suppressed for thinnest films when anharmonic coupling between in-plane and out-of-plane phonon modes occurs. The observed about four-fold enhancement of electron-phonon coupling in Dirac SS of the 8 - 10 nm thick Bi2Se3 films with respect to the bulk samples may provide new insights into the origin of superconductivity in this-type materials and their applications

    Effect of Mn doping on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3

    Full text link
    Transient reflectivity (TR) measured at laser photon energy 1.51 eV from the indirectly intersurface coupled topological insulator Bi2-xMnxSe3 films (12 nm thick) revealed a strong dependence of the rise-time and initial decay-time constants on photoexcited carrier density and Mn content. In undoped samples (x = 0), these time constants are exclusively governed by electron-electron and electron-phonon scattering, respectively, whereas in films with x = 0.013 - 0.27 ultrafast carrier dynamics are completely controlled by photoexcited electron trapping by ionized Mn2+ acceptors and their dimers. The shortest decay-time (~0.75 ps) measured for the film with x = 0.27 suggests a great potential of Mn-doped Bi2Se3 films for applications in high-speed optoelectronic devices. Using Raman spectroscopy exploiting similar laser photon energy (1.58 eV), we demonstrate that due to indirect intersurface coupling in the films, the photoexcited electron trapping in the bulk enhances the electron-phonon interaction strength in Dirac surface states

    Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices

    Full text link
    Epitaxial NbO2 (110) films, 20 nm thick, were grown by pulsed laser deposition on Al2O3 (0001) substrates. The Ar/O2 total pressure during growth was varied to demonstrate the gradual transformation between NbO2 and Nb2O5 phases, which was verified using x-ray diffraction, x-ray photoelectron spectroscopy, and optical absorption measurements. Electric resistance threshold switching characteristics were studied in a lateral geometry using interdigitated Pt top electrodes in order to preserve the epitaxial crystalline quality of the films. Volatile and reversible transitions between high and low resistance states were observed in epitaxial NbO2 films, while irreversible transitions were found in case of Nb2O5 phase. Electric field pulsed current measurements confirmed thermally-induced threshold switching.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics D: Applied Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0022-3727/48/33/33530

    Acoustic phonon dynamics in thin-films of the topological insulator Bi2Se3

    Get PDF
    Transient reflectivity traces measured for nanometer-sized films of the topological insulator Bi2Se3 revealed GHz-range oscillations driven within the relaxation of hot carriers photoexcited with ultrashort laser pulses of 1.51 eV photon energy. These oscillations have been suggested to result from acoustic phonon dynamics, including coherent longitudinal acoustic phonons in the form of standing acoustic waves. An increase of oscillation frequency from ~35 to ~70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the interplay between two different regimes employing traveling-acoustic-waves for films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR) modes for films thinner than 40 nm. The amplitude of oscillations decays rapidly for films below 15 nm thick when the indirect intersurface coupling in Bi2Se3 films switches the FBAWR regime to that of the Lamb wave excitation. The frequency range of coherent longitudinal acoustic phonons is in good agreement with elastic properties of Bi2Se3
    • …
    corecore