171 research outputs found
Time-scales of crustal anatexis: monazite petrochronology of Himalayan granites
Accessory phases, such as monazite, xenotime, and zircon, record a wealth of information regarding the timing, duration, and sources of crustal melting. Combined U-Th/Pb and REE analysis of these petrochronometers by laser ablation split stream inductively coupled plasma mass spectrometry (LASS-ICPMS) reveals complex spatiotemporal relationships on a range of scales, from distinct chemical domains within a single crystal, to cross-cutting dikes within heterogeneous plutons composed of multiple melt batches. The anatectic core of the Himalaya exposes mid-crustal rocks well suited for investigations of the time-scales involved in melt processes, such as generation, segregation, amalgamation, mobilization, and emplacement. Three examples from different settings within the Himalayan orogen, including 1) the Leo Pargil leucogranite injection complex exposed in a gneiss dome in the hinterland, 2) the Manaslu pluton at the interface between the anatectic core and overlying metasediments, and 3) Everest region and Mahabharat granites from the anatectic core to the crystalline thrust sheet of the foreland, illustrate the value of monazite for deciphering crystallization in source rocks and/or earlier melt batches in addition to determining granite emplacement age
Recommended from our members
A smart polymer for sequence-selective binding, pulldown, and release of DNA targets
Selective isolation of DNA is crucial for applications in biology, bionanotechnology, clinical diagnostics and forensics. We herein report a smart methanol-responsive polymer (MeRPy) that can be programmed to bind and separate single- as well as double-stranded DNA targets. Captured targets are quickly isolated and released back into solution by denaturation (sequence-agnostic) or toehold-mediated strand displacement (sequence-selective). The latter mode allows 99.8% efficient removal of unwanted sequences and 79% recovery of highly pure target sequences. We applied MeRPy for the depletion of insulin, glucagon, and transthyretin cDNA from clinical next-generation sequencing (NGS) libraries. This step improved the data quality for low-abundance transcripts in expression profiles of pancreatic tissues. Its low cost, scalability, high stability and ease of use make MeRPy suitable for diverse applications in research and clinical laboratories, including enhancement of NGS libraries, extraction of DNA from biological samples, preparative-scale DNA isolations, and sorting of DNA-labeled non-nucleic acid targets. © 2020, The Author(s)
Women Scientists Who Made Nuclear Astrophysics
Female role models reduce the impact on women of stereotype threat, i.e., of being at risk of conforming to a negative stereotype about one's social, gender, or racial group [1,2]. This can lead women scientists to underperform or to leave their scientific career because of negative stereotypes such as, not being as talented or as interested in science as men. Sadly, history rarely provides role models for women scientists; instead, it often renders these women invisible [3]. In response to this situation, we present a selection of twelve outstanding women who helped to develop nuclear astrophysics
- …