2,514 research outputs found
Phonon-mediated tuning of instabilities in the Hubbard model at half-filling
We obtain the phase diagram of the half-filled two-dimensional Hubbard model
on a square lattice in the presence of Einstein phonons. We find that the
interplay between the instantaneous electron-electron repulsion and
electron-phonon interaction leads to new phases. In particular, a
d-wave superconducting phase emerges when both anisotropic phonons
and repulsive Hubbard interaction are present. For large electron-phonon
couplings, charge-density-wave and s-wave superconducting regions also appear
in the phase diagram, and the widths of these regions are strongly dependent on
the phonon frequency, indicating that retardation effects play an important
role. Since at half-filling the Fermi surface is nested, spin-density-wave is
recovered when the repulsive interaction dominates. We employ a functional
multiscale renormalization-group method that includes both electron-electron
and electron-phonon interactions, and take retardation effects fully into
account.Comment: 8 pages, 5 figure
Validity of effective material parameters for optical fishnet metamaterials
Although optical metamaterials that show artificial magnetism are mesoscopic
systems, they are frequently described in terms of effective material
parameters. But due to intrinsic nonlocal (or spatially dispersive) effects it
may be anticipated that this approach is usually only a crude approximation and
is physically meaningless. In order to study the limitations regarding the
assignment of effective material parameters, we present a technique to retrieve
the frequency-dependent elements of the effective permittivity and permeability
tensors for arbitrary angles of incidence and apply the method exemplarily to
the fishnet metamaterial. It turns out that for the fishnet metamaterial,
genuine effective material parameters can only be introduced if quite stringent
constraints are imposed on the wavelength/unit cell size ratio. Unfortunately
they are only met far away from the resonances that induce a magnetic response
required for many envisioned applications of such a fishnet metamaterial. Our
work clearly indicates that the mesoscopic nature and the related spatial
dispersion of contemporary optical metamaterials that show artificial magnetism
prohibits the meaningful introduction of conventional effective material
parameters
- …