641 research outputs found

    RADIOTERAPIA: Radioterapia con supervoltaje

    Get PDF

    Balance differences in people with Parkinson disease with and without freezing of gait

    Full text link
    Published in final edited form as: Gait Posture. 2015 September ; 42(3): 306–309. doi:10.1016/j.gaitpost.2015.06.007.BACKGROUND: Freezing of gait (FOG) is a relatively common and remarkably disabling impairment associated with Parkinson disease (PD). Laboratory-based measures indicate that individuals with FOG (PD+FOG) have greater balance deficits than those without FOG (PD-FOG). Whether such differences also can be detected using clinical balance tests has not been investigated. We sought to determine if balance and specific aspects of balance, measured using Balance Evaluation Systems Test (BESTest), differs between PD+FOG and PD-FOG. Furthermore, we aimed to determine if time-efficient clinical balance measures (i.e. Mini-BESTest, Berg Balance Scale (BBS)) could detect balance differences between PD+FOG and PD-FOG. METHODS: Balance of 78 individuals with PD, grouped as either PD+FOG (n=32) or PD-FOG (n=46), was measured using the BESTest, Mini-BESTest, and BBS. Between-groups comparisons were conducted for these measures and for the six sections of the BESTest using analysis of covariance. A PD composite score was used as a covariate. RESULTS: Controlling for motor sign severity, PD duration, and age, PD+FOG had worse balance than PD-FOG when measured using the BESTest (p=0.008, F=7.35) and Mini-BESTest (p=0.002, F=10.37), but not the BBS (p=0.27, F=1.26). BESTest section differences were noted between PD+FOG and PD-FOG for reactive postural responses (p<0.001, F=14.42) and stability in gait (p=0.003, F=9.18). CONCLUSIONS: The BESTest and Mini-BESTest, which specifically assessed reactive postural responses and stability in gait, were more likely than the BBS to detect differences in balance between PD+FOG and PD-FOG. Because it is more time efficient to administer, the Mini-BESTest may be the preferred tool for assessing balance deficits associated with FOG.This study was conducted with funding from the Davis Phinney Foundation, Parkinson's Disease Foundation, NIH R01 NS077959, NIH UL1 TR000448, Greater St. Louis American Parkinson Disease Association (APDA), APDA Center for Advanced PD Research at Washington University in St. Louis. The funding sources had no role in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication. (Davis Phinney Foundation; Parkinson's Disease Foundation; R01 NS077959 - NIH; UL1 TR000448 - NIH; Greater St. Louis American Parkinson Disease Association (APDA); APDA Center for Advanced PD Research at Washington University in St. Louis

    External validation of a simple clinical tool used to predict falls in people with Parkinson disease

    Full text link
    Published in final edited form as: Parkinsonism Relat Disord. 2015 August ; 21(8): 960–963. doi:10.1016/j.parkreldis.2015.05.008.BACKGROUND: Assessment of fall risk in an individual with Parkinson disease (PD) is a critical yet often time consuming component of patient care. Recently a simple clinical prediction tool based only on fall history in the previous year, freezing of gait in the past month, and gait velocity <1.1 m/s was developed and accurately predicted future falls in a sample of individuals with PD. METHODS: We sought to externally validate the utility of the tool by administering it to a different cohort of 171 individuals with PD. Falls were monitored prospectively for 6 months following predictor assessment. RESULTS: The tool accurately discriminated future fallers from non-fallers (area under the curve [AUC] = 0.83; 95% CI 0.76–0.89), comparable to the developmental study. CONCLUSION: The results validated the utility of the tool for allowing clinicians to quickly and accurately identify an individual's risk of an impending fall.Davis Phinney Foundation, Parkinson Disease Foundation, NIH, APDA. (Davis Phinney Foundation; Parkinson Disease Foundation; NIH; APDA

    Are the average gait speeds during the 10 meter and 6 minute walk tests redundant in Parkinson disease?

    Full text link
    Published in final edited form as: Gait Posture. 2017 February ; 52: 178–182. doi:10.1016/j.gaitpost.2016.11.033.We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population.This study was funded by the Davis Phinney Foundation, the Parkinson's Disease Foundation, and the National Institutes of Health (R01 NS077959, K12 HD055931, UL1 TR000448). The funding sources had no input related to study design, data collection, or decision to submit for publication. (Davis Phinney Foundation; Parkinson's Disease Foundation; R01 NS077959 - National Institutes of Health; K12 HD055931 - National Institutes of Health; UL1 TR000448 - National Institutes of Health

    A persistent major mutation in canonical jasmonate signaling is embedded in an herbivory-elicited gene network

    Full text link
    When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model

    High intensity variable stepping training in persons with motor incomplete spinal cord injury: a case series

    Get PDF
    Background and Purpose: Previous data suggest that large amounts of high intensity stepping training in variable contexts (tasks and environments) may improve locomotor function, aerobic capacity and treadmill gait kinematics in individuals post-stroke. Whether similar training strategies are tolerated and efficacious for patients with other acute-onset neurological diagnoses, such as motor incomplete spinal cord injury (iSCI) is unknown, particularly with potentially greater, bilateral impairments. This case series evaluated the feasibility and preliminary short and long-term efficacy of high intensity variable stepping practice in ambulatory participants >1 year post-iSCI. Case Series Description: Four participants with iSCI (neurological levels C5-T3) completed up to 40 1-hr sessions over 3–4 months. Stepping training in variable contexts was performed at up to 85% maximum predicted heart rate, with feasibility measures of patient tolerance, total steps/session, and intensity of training. Clinical measures of locomotor function, balance, peak metabolic capacity and gait kinematics during graded treadmill assessments were performed at baseline and post-training, with >1 year follow-up. Outcomes: Participants completed 24–40 sessions over 8–15 weeks, averaging 2222±653 steps/session, with primary adverse events of fatigue and muscle soreness. Modest improvements in locomotor capacity where observed at post-training, with variable changes in lower extremity kinematics during treadmill walking. Discussion: High intensity, variable stepping training was feasible and tolerated by participants with iSCI although only modest gains in gait function or quality were observed. The utility of this intervention in patients with more profound impairments may be limited

    Comparative utility of the BESTest, mini-BESTest, and brief-BESTest for predicting falls in individuals with Parkinson disease: A cohort study

    Get PDF
    BACKGROUND: The newly developed Brief–Balance Evaluation System Test (Brief-BESTest) may be useful for measuring balance and predicting falls in individuals with Parkinson disease (PD). OBJECTIVES: The purposes of this study were: (1) to describe the balance performance of those with PD using the Brief-BESTest, (2) to determine the relationships among the scores derived from the 3 versions of the BESTest (ie, full BESTest, Mini-BESTest, and Brief-BESTest), and (3) to compare the accuracy of the Brief-BESTest with that of the Mini-BESTest and BESTest in identifying recurrent fallers among people with PD. DESIGN: This was a prospective cohort study. METHODS: Eighty participants with PD completed a baseline balance assessment. All participants reported a fall history during the previous 6 months. Fall history was again collected 6 months (n=51) and 12 months (n=40) later. RESULTS: At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-BESTest (r=.94, P<.001) and BESTest (r=.95, P<.001) scores. Six-month retrospective fall prediction accuracy of the Brief-BESTest was moderately high (area under the curve [AUC]=0.82, sensitivity=0.76, and specificity=0.84). Prospective fall prediction accuracy over 6 months was similarly accurate (AUC=0.88, sensitivity=0.71, and specificity=0.87), but was less sensitive over 12 months (AUC=0.76, sensitivity=0.53, and specificity=0.93). LIMITATIONS: The sample included primarily individuals with mild to moderate PD. Also, there was a moderate dropout rate at 6 and 12 months. CONCLUSIONS: All versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern

    Accuracy of Fall Prediction in Parkinson Disease: Six-Month and 12-Month Prospective Analyses

    Get PDF
    Introduction. We analyzed the ability of four balance assessments to predict falls in people with Parkinson Disease (PD) prospectively over six and 12 months. Materials and Methods. The BESTest, Mini-BESTest, Functional Gait Assessment (FGA), and Berg Balance Scale (BBS) were administered to 80 participants with idiopathic PD at baseline. Falls were then tracked for 12 months. Ability of each test to predict falls at six and 12 months was assessed using ROC curves and likelihood ratios (LR). Results. Twenty-seven percent of the sample had fallen at six months, and 32% of the sample had fallen at 12 months. At six months, areas under the ROC curve (AUC) for the tests ranged from 0.8 (FGA) to 0.89 (BESTest) with LR+ of 3.4 (FGA) to 5.8 (BESTest). At 12 months, AUCs ranged from 0.68 (BESTest, BBS) to 0.77 (Mini-BESTest) with LR+ of 1.8 (BESTest) to 2.4 (BBS, FGA). Discussion. The various balance tests were effective in predicting falls at six months. All tests were relatively ineffective at 12 months. Conclusion. This pilot study suggests that people with PD should be assessed biannually for fall risk

    Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach

    Get PDF
    Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally

    The development and application of a new tool to assess the adequacy of the content and timing of antenatal care

    Get PDF
    Abstract Background: Current measures of antenatal care use are limited to initiation of care and number of visits. This study aimed to describe the development and application of a tool to assess the adequacy of the content and timing of antenatal care. Methods: The Content and Timing of care in Pregnancy (CTP) tool was developed based on clinical relevance for ongoing antenatal care and recommendations in national and international guidelines. The tool reflects minimal care recommended in every pregnancy, regardless of parity or risk status. CTP measures timing of initiation of care, content of care (number of blood pressure readings, blood tests and ultrasound scans) and whether the interventions were received at an appropriate time. Antenatal care trajectories for 333 pregnant women were then described using a standard tool (the APNCU index), that measures the quantity of care only, and the new CTP tool. Both tools categorise care into 4 categories, from ‘Inadequate’ (both tools) to ‘Adequate plus’ (APNCU) or ‘Appropriate’ (CTP). Participants recorded the timing and content of their antenatal care prospectively using diaries. Analysis included an examination of similarities and differences in categorisation of care episodes between the tools. Results: According to the CTP tool, the care trajectory of 10,2% of the women was classified as inadequate, 8,4% as intermediate, 36% as sufficient and 45,3% as appropriate. The assessment of quality of care differed significantly between the two tools. Seventeen care trajectories classified as ‘Adequate’ or ‘Adequate plus’ by the APNCU were deemed ‘Inadequate’ by the CTP. This suggests that, despite a high number of visits, these women did not receive the minimal recommended content and timing of care. Conclusions: The CTP tool provides a more detailed assessment of the adequacy of antenatal care than the current standard index. However, guidelines for the content of antenatal care vary, and the tool does not at the moment grade over-use of interventions as ‘Inappropriate’. Further work needs to be done to refine the content items prior to larger scale testing of the impact of the new measure
    corecore