1,142 research outputs found

    Development and test of advanced composite components. Center Directors discretionary fund program

    Get PDF
    This report describes the design, analysis, fabrication, and test of a complex bathtub fitting. Graphite fibers in an epoxy matrix were utilized in manufacturing of 11 components representing four different design and layup concepts. Design allowables were developed for use in the final stress analysis. Strain gage measurements were taken throughout the static load test and correlation of test and analysis data were performed, yielding good understanding of the material behavior and instrumentation requirements for future applications

    Gyroscopes based on nitrogen-vacancy centers in diamond

    Full text link
    We propose solid-state gyroscopes based on ensembles of negatively charged nitrogen-vacancy (NV−{\rm NV^-}) centers in diamond. In one scheme, rotation of the nitrogen-vacancy symmetry axis will induce Berry phase shifts in the NV−{\rm NV^{-}} electronic ground-state coherences proportional to the solid angle subtended by the symmetry axis. We estimate sensitivity in the range of 5×10−3rad/s/Hz5\times10^{-3} {\rm rad/s/\sqrt{Hz}} in a 1 mm3{\rm mm^3} sensor volume using a simple Ramsey sequence. Incorporating dynamical decoupling to suppress dipolar relaxation may yield sensitivity at the level of 10−5rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}}. With a modified Ramsey scheme, Berry phase shifts in the 14N{\rm ^{14}N} hyperfine sublevels would be employed. The projected sensitivity is in the range of 10−5rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}}, however the smaller gyromagnetic ratio reduces sensitivity to magnetic-field noise by several orders of magnitude. Reaching 10−5rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}} would represent an order of magnitude improvement over other compact, solid-state gyroscope technologies.Comment: 3 figures, 5 page

    Engaging stakeholders in research to address water-energy-food (WEF) nexus challenges

    Get PDF
    The water–energy–food (WEF) nexus has become a popular, and potentially powerful, frame through which to analyse interactions and interdependencies between these three systems. Though the case for transdisciplinary research in this space has been made, the extent of stakeholder engagement in research remains limited with stakeholders most commonly incorporated in research as end-users. Yet, stakeholders interact with nexus issues in a variety of ways, consequently there is much that collaboration might offer to develop nexus research and enhance its application. This paper outlines four aspects of nexus research and considers the value and potential challenges for transdisciplinary research in each. We focus on assessing and visualising nexus systems; understanding governance and capacity building; the importance of scale; and the implications of future change. The paper then proceeds to describe a novel mixed-method study that deeply integrates stakeholder knowledge with insights from multiple disciplines. We argue that mixed-method research designs—in this case orientated around a number of cases studies—are best suited to understanding and addressing real-world nexus challenges, with their inevitable complex, non-linear system characteristics. Moreover, integrating multiple forms of knowledge in the manner described in this paper enables research to assess the potential for, and processes of, scaling-up innovations in the nexus space, to contribute insights to policy and decision making

    An Arabic Version of the Spiritual Well-Being Scale

    Get PDF
    This article reports on two studies to develop and validate an Arabic language version of the Spiritual Well-Being Scale (SWBS). The first study was a pilot study at a major government university in Jordan (N = 75, students). The second and main study was conducted in 5 large regional hospitals in Jordan (N = 63, patients). The SWBS was translated from English to Arabic and reviewed by an expert panel for language, cultural, and spiritual consistency. The Arabic version of the SWBS was revised after the results of the pilot study and further reviewed by an expert panel. The resulting data were subjected to descriptive and factor analysis. Results showed that the final version of the SWBS used in the main study had a two-factor structure consistent with previous studies. Descriptive data for a range of demographic variables are presented. Issues of inadequate translation and lack of variation in responses for some items are identified and the results discussed in light of dominant Islamic theological frameworks. © 2012 Taylor and Francis Group, LLC

    A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones

    Get PDF
    The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse

    CD40 Ligand Expression is Defective in a Subset of Patients with Common Variable Immunodeficiency.

    Get PDF
    Common variable immunodeficiency (CVI) is characterized by hypogammaglobulinemia and recurrent bacterial infections due to failure of CVI B cells to differentiate in vivo into immunoglobulin-secreting plasma cells. We hypothesized that T-cell dysfunction resulting in abnormal contact-mediated B-cell activation may play a prominent role in the failure of CVI B cells to produce specific antibody. We have previously shown that B-cell proliferation and IgE production after stimulation with anti-CD40 and interleukin (IL) 4 were normal in 22 CVI patients evaluated, indicating that CVI B cells respond to signals delivered via CD40. Here we report that CD40 ligand (gp39) mRNA expression by activated lymphocytes from CVI patients (n = 31) as a group was significantly depressed (P \u3c 0.0001) compared with normal controls (n = 32). gp39 mRNA expression by activated lymphocytes from 13 CVI patients fell below the normal control range. T-cell surface expression of functional gp39 protein was correspondingly low in those patients with gp39 mRNA levels below normal control range and normal in patients with gp39 mRNA levels within normal control range. In CVI patients as a group, gp39 mRNA levels correlated with IL-2 mRNA levels (P \u3c 0.002, r = 0.6) and production (P \u3c 0.001, r = 0.7) but not with gene expression or production of other lymphokines evaluated, suggesting an as-yet-undetermined association between gp39 and IL-2 gene regulation. Of the 13 patients whose activated T cells exhibited gp39 mRNA expression below the normal control range, 2 had normal T-cell-derived lymphokine production, whereas the remaining 11 exhibited broader T-cell dysfunction, resulting in IL-2 deficiency, and in some patients deficient production of other lymphokines as well, reflecting a heterogeneity in the underlying mechanisms leading to depressed gp39 expression in these patients. The observation that both gene and surface expression of gp39 by activated T cells is depressed in a subgroup of CVI patients suggests that inefficient signaling via CD40 may be responsible, in part, for failure of B-cell differentiation in these patients

    Strong electron-phonon coupling in delta-phase stabilized Pu

    Full text link
    Heat capacity measurements of the delta-phase stabilized alloy Pu-Al suggest that strong electron-phonon coupling is required to explain the moderate renormalization of the electronic density of states near the Fermi energy. We calculate the heat capacity contributions from the lattice and electronic degrees of freedom as well as from the electron-lattice coupling term and find good overall agreement between experiment and theory assuming a dimensionless electron-phonon coupling parameter of order unity, lambda ~ 0.8. This large electron-phonon coupling parameter is comparable to reported values in other superconducting metals with face-centered cubic crystal structure, for example, Pd (lambda ~ 0.7) and Pb (lambda ~ 1.5). Further, our analysis shows evidence of a sizable residual low-temperature entropy contribution, S_{res} ~ 0.4 k_B (per atom). We can fit the residual specific heat to a two-level system. Therefore, we speculate that the observed residual entropy originates from crystal-electric field effects of the Pu atoms or from self-irradiation induced defects frozen in at low temperatures.Comment: 9 pages, 11 figures, to appear in Phys. Rev.
    • …
    corecore