726 research outputs found
Tailoring strain in SrTiO3 compound by low energy He+ irradiation
The ability to generate a change of the lattice parameter in a near-surface
layer of a controllable thickness by ion implantation of strontium titanate is
reported here using low energy He+ ions. The induced strain follows a
distribution within a typical near-surface layer of 200 nm as obtained from
structural analysis. Due to clamping effect from the underlying layer, only
perpendicular expansion is observed. Maximum distortions up to 5-7% are
obtained with no evidence of amorphisation at fluences of 1E16 He+ ions/cm2 and
ion energies in the range 10-30 keV.Comment: 11 pages, 4 figures, Accepted for publication in Europhysics Letter
(http://iopscience.iop.org/0295-5075
Time-resolved PhotoEmission Spectroscopy on a Metal/Ferroelectric Heterostructure
In thin film ferroelectric capacitor the chemical and electronic structure of
the electrode/FE interface can play a crucial role in determining the kinetics
of polarization switching. We investigate the electronic structure of a
Pt/BaTiO3/SrTiO3:Nb capacitor using time-resolved photoemission spectroscopy.
The chemical, electronic and depth sensitivity of core level photoemission is
used to probe the transient response of different parts of the upper
electrode/ferroelectric interface to voltage pulse induced polarization
reversal. The linear response of the electronic structure agrees quantitatively
with a simple RC circuit model. The non-linear response due to the polarization
switch is demonstrated by the time-resolved response of the characteristic core
levels of the electrode and the ferroelectric. Adjustment of the RC circuit
model allows a first estimation of the Pt/BTO interface capacitance. The
experiment shows the interface capacitance is at least 100 times higher than
the bulk capacitance of the BTO film, in qualitative agreement with theoretical
predictions from the literature.Comment: 7 pages, 10 figures. Submitted to Phys. Rev.
Efficiency at maximum power of thermally coupled heat engines
We study the efficiency at maximum power of two coupled heat engines, using
thermoelectric generators (TEGs) as engines. Assuming that the heat and
electric charge fluxes in the TEGs are strongly coupled, we simulate
numerically the dependence of the behavior of the global system on the
electrical load resistance of each generator in order to obtain the working
condition that permits maximization of the output power. It turns out that this
condition is not unique. We derive a simple analytic expression giving the
relation between the electrical load resistance of each generator permitting
output power maximization. We then focuse on the efficiency at maximum power
(EMP) of the whole system to demonstrate that the Curzon-Ahlborn efficiency may
not always be recovered: the EMP varies with the specific working conditions of
each generator but remains in the range predicted by irreversible
thermodynamics theory. We finally discuss our results in light of non-ideal
Carnot engine behavior.Comment: 11 pages, 7 figure
Interface Electronic Structure in a Metal/Ferroelectric Heterostructure under Applied Bias
The effective barrier height between an electrode and a ferroelectric (FE)
depends on both macroscopic electrical properties and microscopic chemical and
electronic structure. The behavior of a prototypical electrode/FE/electrode
structure, Pt/BaTiO3/Nb-doped SrTiO3, under in-situ bias voltage is
investigated using X-Ray Photoelectron Spectroscopy. The full band alignment is
measured and is supported by transport measurements. Barrier heights depend on
interface chemistry and on the FE polarization. A differential response of the
core levels to applied bias as a function of the polarization state is
observed, consistent with Callen charge variations near the interface.Comment: 9 pages, 8 figures. Submitted to Phys. Rev.
Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices
The recent development in the fabrication of artificial oxide
heterostructures opens new avenues in the field of quantum materials by
enabling the manipulation of the charge, spin and orbital degrees of freedom.
In this context, the discovery of two-dimensional electron gases (2-DEGs) at
LAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba
spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on
the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical
properties, including superconductivity and SOC, can be tuned over a wide range
by a top-gate voltage. We derive a phase diagram, which emphasises a
field-effect-induced superconductor-to-insulator quantum phase transition.
Magneto-transport measurements indicate that the Rashba coupling constant
increases linearly with electrostatic doping. Our results pave the way for the
realisation of mesoscopic devices, where these two properties can be
manipulated on a local scale by means of top-gates
Gaia eclipsing binary and multiple systems. Two-Gaussian models applied to OGLE-III eclipsing binary light curves in the Large Magellanic Cloud
The advent of large scale multi-epoch surveys raises the need for automated
light curve (LC) processing. This is particularly true for eclipsing binaries
(EBs), which form one of the most populated types of variable objects. The Gaia
mission, launched at the end of 2013, is expected to detect of the order of few
million EBs over a 5-year mission.
We present an automated procedure to characterize EBs based on the geometric
morphology of their LCs with two aims: first to study an ensemble of EBs on a
statistical ground without the need to model the binary system, and second to
enable the automated identification of EBs that display atypical LCs. We model
the folded LC geometry of EBs using up to two Gaussian functions for the
eclipses and a cosine function for any ellipsoidal-like variability that may be
present between the eclipses. The procedure is applied to the OGLE-III data set
of EBs in the Large Magellanic Cloud (LMC) as a proof of concept. The bayesian
information criterion is used to select the best model among models containing
various combinations of those components, as well as to estimate the
significance of the components.
Based on the two-Gaussian models, EBs with atypical LC geometries are
successfully identified in two diagrams, using the Abbe values of the original
and residual folded LCs, and the reduced . Cleaning the data set from
the atypical cases and further filtering out LCs that contain non-significant
eclipse candidates, the ensemble of EBs can be studied on a statistical ground
using the two-Gaussian model parameters. For illustration purposes, we present
the distribution of projected eccentricities as a function of orbital period
for the OGLE-III set of EBs in the LMC, as well as the distribution of their
primary versus secondary eclipse widths.Comment: 20 pages, 29 figures. Submitted to A&
Position estimation for a mobile robot using monocular vision and odometry
We describe a localisation system for a robot moving in a known environment .
Unlike the currently used methods for industrial robots, our approach does not
require any beacons to be installed : the system uses odometry to estimate the
vehicle position continuously, and corrects this estimation when necessary by
identifying some objects of the environment through vision . These objects, used as
landmarks, were previously recorded in a data base .
The different parts of the system are presented particularly the way the uncertainty
on odometry is updated and how prior knowledge (position estimation and data
base) is employed to facilitate landmark identification. 7 cm on xy and I deg on
the heading is the typical precision obtained in term of localisation .Nous présentons un système de localisation pour un robot mobile évoluant dans un environnement connu. La méthode, contrairement à celles actuellement utilisées dans l'industrie, ne nécessite pas l'équipement du site en balises : la position du robot est estimée à chaque instant par odométrie, et recalée périodiquement en repérant, à l'aide d'une caméra mobile montée sur le véhicule, des objets de l'environnement jouant le rôle d'amer. Ces objets sont répertoriés dans une base de données constituée au préalable. Les différentes composantes du système sont présentées : nous montrons en particulier comment l'incertitude sur la position du robot évolue avec les erreurs d'odométrie, et comment les connaissances a priori (position estimée, base de données) sont mises à profit pour identifier les amers. La précision typiquement obtenue en matière de localisation est de 7 cm selon xy et 1 deg en cap
- …