71 research outputs found

    Long period variables and mass loss in the globular clusters NGC 362 and NGC 2808

    Get PDF
    The pulsation periods of long period variables (LPVs) depend on their mass and helium abundance as well as on their luminosity and metal abundance. Comparison of the observed periods of LPVs in globular clusters with models is capable of revealing the amount of mass lost on the giant branch and the helium abundance.} {We aim to determine the amount of mass loss that has occurred on the giant branches of the low metallicity globular clusters NGC 362 and NGC 2808. We also aim to see if the LPVs in NGC 2808 can tell us about helium abundance variations in this cluster.} We have used optical monitoring of NGC 362 and NGC 2808 to determine periods for the LPVs in these clusters. We have made linear pulsation models for the pulsating stars in these clusters taking into account variations in mass and helium abundance. Reliable periods have been determined for 11 LPVs in NGC 362 and 15 LPVs in NGC 2808. Comparison of the observed variables with models in the logP - K diagram shows that mass loss of ~0.15-0.2 Msun is required on the first giant branch in these clusters, in agreement with estimates from other methods. In NGC 2808, there is evidence that a high helium abundance of Y~0.4 is required to explain the periods of several of the LPVs. It would be interesting to determine periods for LPVs in other Galactic globular clusters where a helium abundance variation is suspected to see if the completely independent test for a high helium abundance provided by the LPVs can confirm the high helium abundance estimates.Comment: 13 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Two barium stars in the Galactic bulge

    Full text link
    Barium stars conserve important information on the s-process and the third dredge-up in intermediate mass stars. Their discovery in various environments is therefore of great help to test nucleosynthesis and mixing models. Our aim is to analyse two stars with a very strong barium line detected in a large survey of red giants in the Galactic bulge. Abundance analysis was done comparing synthetic model spectra based on the COMARCS code with our medium resolution spectra. Abundances of Ba, La, Y, and Fe were determined. Beside the two main targets, the analysis was also applied to two comparison stars. We confirm that both stars are barium stars. They are the first ones of this kind identified in the Galactic bulge. Their barium excesses are among the largest values found up to now. The elemental abundances are compared with current nucleosynthesis and mixing models. Furthermore, we estimate a frequency of barium stars in the Galactic bulge of about 1%, which is identical to the value for disc stars.Comment: 4 pages, accepted for publication in A&

    Oxygen isotopic ratios in intermediate-mass red giants

    Get PDF
    Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic ratios. Aims. By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods. Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 Msun . The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results. The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do not present clear evidence of a variation with the stellar mass. The observed 16O/18O ratios are clearly lower than the predictions from our reference model. Variations in nuclear reaction rates and mixing length parameter both have only a very weak effect on the predicted values. The 12C/13C ratios of the K giants studied implies the absence of extra-mixing in these objects. Conclusions. A comparison with galactic chemical evolution models indicates that the 16O/18O abundance ratio underwent a faster decrease than predicted. To explain the observed ratios, the most likely scenario is a higher initial 18O abundance combined with a lower initial 16 O abundance. Comparing the measured 18 O/17 O ratio with the corresponding value for the ISM points towards an initial enhancement of 17O as well. Limitations imposed by the observations prevent this from being a conclusive result.Comment: 9 pages, accepted for publication in Astronomy & Astrophysic

    Abundance analysis for long-period variables II. RGB and AGB stars in the globular cluster 47\,Tuc

    Full text link
    Asymptotic giant branch (AGB) stars play a key role in the enrichment of galaxies with heavy elements. Due to their large amplitude variability, the measurement of elemental abundances is a highly challenging task that has not been solved in a satisfactory way yet. Following our previous work we use hydrostatic and dynamical model atmospheres to simulate observed high-resolution near-infrared spectra of 12 variable and non-variable red giants in the globular cluster 47 Tuc. The 47 Tuc red giants are independently well-characterized in important parameters (mass, metallicity, luminosity). The principal aim was to compare synthetic spectra based on the dynamical models with observational spectra of 47 Tuc variables. Assuming that the abundances are unchanged on the upper giant branch in these low-mass stars, our goal is to estimate the impact of atmospheric dynamics on the abundance determination. We present new measurements of the C/O and 12C/13C ratio for 5 non-variable red giants in 47Tuc. The equivalent widths measured for our 7 variable stars strongly differ from the non-variable stars and cannot be reproduced by either hydrostatic or dynamical model atmospheres. Nevertheless, the dynamical models fit the observed spectra of long-period variables much better than any hydrostatic model. For some spectral features, the variations in the line intensities predicted by dynamical models over a pulsation cycle give similar values as a sequence of hydrostatic models with varying temperature and constant surface gravity.Comment: 16 pages, 12 figures; accepted for publication in A&

    CRIRES-POP: a library of high resolution spectra in the near-infrared. III. Line identification in the K-giant 10 Leo

    Full text link
    Context: High-resolution spectra in the near-infrared (NIR) are an important tool for the detailed study of stellar atmospheres. The accurate identification of elements and molecules in these spectra can be used to determine chemical abundances and physical conditions in the photosphere of the observed star. Such identifications require precise line positions and strengths of both atomic and molecular features. Aims: This work focusses on the full identification of absorption lines in the NIR spectrum of the K-giant 10 Leo, including previously unidentified lines. The large number and complexity of the observed absorption lines require a deep search for potential spectral signatures to enable an unambiguous assignment to specific elements or molecular species. We aim to improve the published line lists of metals, some of which are determined by model calculations only, and many of which presently lack the completeness and accuracy of line parameters. Methods: The CRIRES-POP project provided high-resolution, high signal-to-noise ratio (S/N) spectra of several bright stars in the 1 to 5 Ό\mum range. For the K-giant 10 Leo, a spectrum corrected for telluric absorption and with precise wavelength calibration is available. This has been analysed by comparison with model spectra and up-to-date line lists. Results: We identified lines of 29 elements and eight molecular species. While the positions of many known lines could be confirmed, about 6% of all lines detected in 10 Leo could not be attributed to any known feature. For CO and its isotopologues, molecular constants could be derived and several additional lines identified. We report major inconsistencies for some prominent lines. In addition, abundances for several key elements in 10 Leo are provided.Comment: Accepted for publication in A&

    Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of about 400 red giants around (l,b)=(0{\deg},-10{\deg})

    Full text link
    The presence of two stellar populations in the Milky Way bulge has been reported recently. We aim at studying the abundances and kinematics of stars in the outer bulge, thereby providing additional constraints on models of its formation. Spectra of 401 red giant stars in a field at (l,b)=(0{\deg},-10{\deg}) were obtained with FLAMES at the VLT. Stars of luminosities down to below the two bulge red clumps (RCs) are included. From these spectra we measure general metallicities, abundances of Fe and the alpha-elements, and radial velocities (RV) of the stars. These measurements as well as photometric data are compared to simulations with the Besancon and TRILEGAL models of the Galaxy. We confirm the presence of two populations among our sample stars: i) a metal-rich one at [M/H] ~+0.3, comprising about 30% of the sample, with low RV dispersion and low alpha-abundance, and ii) a metal-poor population at [M/H] ~-0.6 with high RV dispersion and high alpha-abundance. The metal-rich population could be connected to the Galactic bar. We identify this population as the carrier of the double RC feature. We do not find a significant difference in metallicity or RV between the two RCs, a small difference in metallicity being probably due to a selection effect. The RV dispersion agrees well with predictions of the Besancon Galaxy model, but the metallicity of the "thick bulge" model component should be shifted to lower metallicity by 0.2 to 0.3dex to well reproduce the observations. We present evidence that the metallicity distribution function depends on the evolutionary state of the sample stars, suggesting that enhanced mass loss preferentially removes metal-rich stars. We also confirm the decrease of \alpha-element over-abundance with increasing metallicity.Comment: 19 pages (excluding on-line table), 21 figures, accepted for publication in A&

    Dust, pulsation, chromospheres and their role in driving mass loss from red giants in Galactic globular clusters

    Full text link
    Context: Mass loss from red giants in old globular clusters affects the horizontal branch (HB) morphology and post-HB stellar evolution including the production of ultraviolet-bright stars, dredge up of nucleosynthesis products and replenishment of the intra-cluster medium. Studies of mass loss in globular clusters also allows one to investigate the metallicity dependence of the mass loss from cool, low-mass stars down to very low metallicities. Aims: We present an analysis of new VLT/UVES spectra of 47 red giants in the Galactic globular clusters 47 Tuc (NGC 104), NGC 362, omega Cen (NGC 5139), NGC 6388, M54 (NGC 6715) and M15 (NGC 7078). The spectra cover the wavelength region 6100-9900A at a resolving power of R = 110,000. Some of these stars are known to exhibit mid-infrared excess emission indicative of circumstellar dust. Our aim is to detect signatures of mass loss, identify the mechanism(s) responsible for such outflows, and measure the mass-loss rates. Methods: We determine for each star its effective temperature, luminosity, radius and escape velocity. We analyse the H-alpha and near-infrared calcium triplet lines for evidence of outflows, pulsation and chromospheric activity, and present a simple model for estimating mass-loss rates from the H-alpha line profile. We compare our results with a variety of other, independent methods. Results: We argue that a chromosphere persists in Galactic globular cluster giants and controls the mass-loss rate to late-K/early-M spectral types, where pulsation becomes strong enough to drive shock waves at luminosities above the RGB tip. This transition may be metallicity-dependent. We find mass-loss rates of ~10^-7 to 10^-5 solar masses per year, largely independent of metallicity.Comment: 23 pages, 17 figures, accepted for publication in Astronomy and Astrophysic

    Modelling Long-Period Variables -- II. Fundamental mode pulsation in the nonlinear regime

    Get PDF
    Long-period variability in luminous red giants has several promising applications, all of which require models able to accurately predict pulsation periods. Linear pulsation models have proven successful in reproducing the observed periods of overtone modes in evolved red giants, but they fail to accurately predict their fundamental mode periods. Here, we use a 1D hydrodynamic code to investigate the long-period variability of M-type asymptotic giant branch stars in the nonlinear regime. We examine the period and stability of low-order radial pulsation modes as a function of mass and radius, and find overtone mode periods in complete agreement with predictions from linear pulsation models. In contrast, nonlinear models predict an earlier onset of dominant fundamental mode pulsation, and shorter periods at large radii. Both features lead to a substantially better agreement with observations, that we verify against OGLE and Gaia data for the Magellanic Clouds. We provide simple analytic relations describing the nonlinear fundamental mode period-mass-radius relation. Differences with respect to linear predictions originate from the readjustment of the envelope structure induced by large-amplitude pulsation. We investigate the impact of turbulent viscosity on linear and nonlinear pulsation, and probe possible effects of varying metallicity and carbon abundance.Comment: 18 pages, 17 figures; accepted for publication in MNRA
    • 

    corecore