349 research outputs found

    Full Rate L2-Orthogonal Space-Time CPM for Three Antennas

    Get PDF
    To combine the power efficiency of Continuous Phase Modulation (CPM) with enhanced performance in fading environments, some authors have suggested to use CPM in combination with Space-Time Codes (STC). Recently, we have proposed a CPM ST-coding scheme based on L2-orthogonality for two transmitting antennas. In this paper we extend this approach to the three antennas case. We analytically derive a family of coding schemes which we call Parallel Code (PC). This code family has full rate and we prove that the proposed coding scheme achieves full diversity as confirmed by accompanying simulations. We detail an example of the proposed ST codes that can be interpreted as a conventional CPM scheme with different alphabet sets for the different transmit antennas which results in a simplified implementation. Thanks to L2-orthogonality, the decoding complexity, usually exponentially proportional to the number of transmitting antennas, is reduced to linear complexity

    L2 Orthogonal Space Time Code for Continuous Phase Modulation

    Get PDF
    To combine the high power efficiency of Continuous Phase Modulation (CPM) with either high spectral efficiency or enhanced performance in low Signal to Noise conditions, some authors have proposed to introduce CPM in a MIMO frame, by using Space Time Codes (STC). In this paper, we address the code design problem of Space Time Block Codes combined with CPM and introduce a new design criterion based on L2 orthogonality. This L2 orthogonality condition, with the help of simplifying assumption, leads, in the 2x2 case, to a new family of codes. These codes generalize the Wang and Xia code, which was based on pointwise orthogonality. Simulations indicate that the new codes achieve full diversity and a slightly better coding gain. Moreover, one of the codes can be interpreted as two antennas fed by two conventional CPMs using the same data but with different alphabet sets. Inspection of these alphabet sets lead also to a simple explanation of the (small) spectrum broadening of Space Time Coded CPM

    Théorie de l’information et diagnostic médical : une analyse coût-efficacité

    Get PDF
    Dans cet article, nous appliquons au domaine médical les principes de la théorie de l’information et nous montrons comment on peut l’utiliser pour sélectionner dans l’ensemble des stratégies diagnostiques possibles celles qui sont coût-efficaces.In this paper, we apply the principles of information theory to medical diagnosis and we show how it can be used to select cost-efficient diagnostic strategies in the set of feasible ones

    A Novel Process for the Production of Unidirectional Hybrid Flax/Paper Reinforcement for Eco-composite Materials

    Get PDF
    AbstractIn this paper a new process to manufacture unidirectional reinforcements for eco-composite materials, made of natural fibers, is presented. Starting with flax rovings of different sizes, an apparatus was developed to feed and align the rovings over the wet-end section of a paper machine. The short kraft paper fibers are therefore mixed with the long flax roving as the machine is running, and at the end of the process, a sheet of the hybrid dry reinforcement is obtained and cut to size for impregnation with various resins, using different processes. This novel manufacturing process allows for high volume production of reinforcement. It is very flexible, and many different combinations of long and short fibers can be exploited for the production of a vast variety of dry reinforcements. In this paper, composite samples are obtained out of these reinforcements, using the resin infusion (RI) molding process with a commercial epoxy resin. The results are compared with those of usual glass fiber reinforcement. An interesting aspect is that the large variability, typical for natural fibers, is largely reduced when the short kraft fibers are present in the composite. In terms of permeability to resin, reasonably comparable values can be obtained compared to that of glass fabrics, if a low surface density of reinforcement is chosen

    L2 OSTC-CPM: Theory and design

    Get PDF
    The combination of space-time coding (STC) and continuous phase modulation (CPM) is an attractive field of research because both STC and CPM bring many advantages for wireless communications. Zhang and Fitz [1] were the first to apply this idea by constructing a trellis based scheme. But for these codes the decoding effort grows exponentially with the number of transmitting antennas. This was circumvented by orthogonal codes introduced by Wang and Xia [2]. Unfortunately, based on Alamouti code [3], this design is restricted to two antennas. However, by relaxing the orthogonality condition, we prove here that it is possible to design L2-orthogonal space-time codes which achieve full rate and full diversity with low decoding effort. In part one, we generalize the two-antenna code proposed by Wang and Xia [2] from pointwise to L2-orthogonality and in part two we present the first L2-orthogonal code for CPM with three antennas. In this report, we detail these results and focus on the properties of these codes. Of special interest is the optimization of the bit error rate which depends on the initial phase of the system. Our simulation results illustrate the systemic behavior of these conditions

    Separable Implementation of L2-Orthogonal STC CPM with Fast Decoding

    Get PDF
    In this paper we present an alternative separable implementation of L2-orthogonal space-time codes (STC) for continuous phase modulation (CPM). In this approach, we split the STC CPM transmitter into a single conventional CPM modulator and a correction filter bank. While the CPM modulator is common to all transmit antennas, the correction filter bank applies different correction units to each antenna. Thereby desirable code properties as orthogonality and full diversity are achievable with just a slightly larger bandwidth demand. This new representation has three main advantages. First, it allows to easily generalize the orthogonality condition to any arbitrary number of transmit antennas. Second, for a quite general set of correction functions that we detail, it can be proved that full diversity is achieved. Third, by separating the modulation and correction steps inside the receiver, a simpler receiver can be designed as a bank of data independent inverse correction filters followed by a single CPM demodulator. Therefore, in this implementation, only one correlation filter bank for the detection of all transmitted signals is necessary. The decoding effort grows only linearly with the number of transmit antennas

    Semi-Blind Cancellation of IQ-Imbalances

    Get PDF
    International audienceThe technical realization of modern wireless receivers yields significant interfering IQ-imbalances, which have to be compensated digitally. To cancel these IQ-imbalances, we propose an algorithm using iterative blind source separation (IBSS) as well as information about the modulation scheme used (hence the term semi-blind). The novelty of our approach lies in the fact that we match the nonlinearity involved in the IBSS algorithm to the probability density function of the source signals. Moreover, we use approximations of the ideal non-linearity to achieve low computational complexity. For severe IQ-mismatch, the algorithm leads to 0.2 dB insertion loss in an AWGN channel and with 16-QAM modulation
    • …
    corecore