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L2 Orthogonal Space Time Code for Continuous

Phase Modulation
Matthias Hesse, Jérôme Lebrun and Luc Deneire

Abstract

To combine the high power efficiency of Continuous Phase Modulation (CPM) with either high spectral efficiency or enhanced
performance in low Signal to Noise conditions, some authorshave proposed to introduce CPM in a MIMO frame, by using
Space Time Codes (STC). In this paper, we address the code design problem of Space Time Block Codes combined with CPM
and introduce a new design criterion based onL2 orthogonality. ThisL2 orthogonality condition, with the help of simplifying
assumption, leads, in the 2x2 case, to a new family of codes. These codes generalize the Wang and Xia code, which was based on
pointwise orthogonality. Simulations indicate that the new codes achieve full diversity and a slightly better coding gain. Moreover,
one of the codes can be interpreted as two antennas fed by two conventional CPMs using the same data but with different alphabet
sets. Inspection of these alphabet sets lead also to a simpleexplanation of the (small) spectrum broadening of Space Time Coded
CPM.

I. I NTRODUCTION

Since the pioneer work of Alamouti [1] and Tarokh [2], Space Time Coding has been a fast growing field of research where

numerous coding schemes have been introduced. Several years later Zhang and Fitz [3], [4] were the first to apply the idea

of STC to continuous phase modulation (CPM) by constructingtrellis codes. In [5] Zajić and Stüber derived conditionsfor

partial response STC-CPM to get full diversity and optimal coding gain. A STC for noncoherent detection based on diagonal

blocks was introduced by Silvester et al. [6].

The first orthogonal STC for CPM for full and partial responsewas developed by Wang and Xia [7], [8]. The scope of

this paper is also the design of an orthogonal STC for CPM. Butunlike Wang-Xia aprroach [8] which starts from a QAM

orthogonal Space-Time Code (e.g. Alamouti’s scheme [1]) and modify it to achieve continuous phases for the transmitted

signals, we show here that a more generalL2 condition is sufficient to ensure fast maximum likelihood decoding with full

diversity.

In the considered system model (Fig.1), the data sequencedj is defined over the signal constellation set

Ωd = {−M + 1,−M + 3, . . . , M − 3, M − 1} (1)

for an alphabet withlog2 M bits. To obtain the structure for a Space Time Block Code (STBC) this sequence is mapped to data

matricesD(i) with elementsd(i)
mr, wherem denotes the transmitting antenna,r the time slot into a block and(i) a parameter

for partial response CPM. The data matrices are then used to modulate the sending matrix

S(t) =

[

s11(t) s12(t)

s21(t) s22(t)

]

. (2)

Each element is defined for(2l + r − 1)T ≤ t ≤ (2l + r)T as

smr(t) =

√

Es

T
ej2πφmr(t) (3)
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Fig. 1. Structure of a MIMO Tx/Rx system

whereEs is the symbol energy andT the symbol time. The phaseφmr(t) is defined in the conventional CPM manner [9]

with an additional correction factorcmr(t) and is therewith given by

φmr(t) = θm(2l + r) + h

2l+r
∑

i=2l+1+r−γ

d(i)
mrq(t − (i − 1)T ) + cmr(t) (4)

whereh = 2m0/p with m0 andp relative primes is called the modulation index. The phase smoothing functionq(t) has to

be a continuous function withq(t) = 0 for t ≤ 0 andq(t) = 1/2 for t ≥ γT .

The memory lengthγ determines the length ofq(t) and affects the spectral compactness. For largeγ we obtain a compact

spectrum but also a higher number of possible phase states which increases the decoding effort. For full response CPM, we

haveγ = 1 and for partial response systemsγ > 1.

The choice of the correction factorcmr(t) in Eq. (4) is along with the mapping ofdj to D
(i), the key element in the design

of our coding scheme. It will be detailed in Section II. We then defineθm(2l + r) in a most general way

θm(2l + 3) = θm(2l + 2) + ξ(2l + 2)

= θm(2l + 1) + ξ(2l + 1) + ξ(2l + 2). (5)

The functionξ(2l + r) will be fully defined from the contributioncmr(t) to the phase memoryθm(2l + r). For conventional

CPM system,cmr(t) = 0 and we haveξ(2l + 1) = h
2d2l+1−γ .

The channel coefficientsαmn are assumed to be Rayleigh distributed and independent. Each coefficientαmn characterizes

the fading between themth transmit (Tx) antenna and thenth receive (Rx) antenna wheren = 1, 2, . . . , Lr. Furthermore, the

received signals

yn(t) = αmnsmr(t) + n(t) (6)

are corrupted by a complex additive white Gaussian noisen(t) with variance1/2 per dimension.

At the receiver, the detection is done on each of theLr received signals separately. Therefore, in general, each code blockS(t)

has to be detected by block. E.g. for a 2x2 block, estimating the symbolsd̂j implies computational complexity proportional to

M2. Now, this complexity can be reduced to2M by introducing an orthogonality property as well as simplifying assumptions

on the code.

Criteria for such STBC are given in Section II. In Section III, the criteria are used to construct OSTBC for CPM. In Section

IV we test the designed code and compare it with the STC from Wang and Xia [8]. Finally, some conclusions are drawn in

Section V.

II. D ESIGN CRITERIA

The purpose of the design is to achieve full diversity and a fast maximum likelihood decoding while maintaining the

continuity of the signal phases. This section shows how the need to perform fast ML decoding leads to theL2 orthogonality

condition as well as to simplifying assumptions, which can be combined with the continuity conditions. For conveniencewe

only consider one Rx antenna and drop the indexn in αmn.
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A. Fast Maximum Likelihood Decoding

Commonly, due to the trellis structure of CPM, the Viterbi algorithm is used to perform the ML demodulation . On block

l each state in the trellis hasM2 incoming branches andM2 outgoing branches with a distance

Dl =

(2l+1)T
∫

2lT

∣

∣

∣
y(t) −

2
∑

m=1

αmsm1(t)
∣

∣

∣

2

dt +

(2l+2)T
∫

(2l+1)T

∣

∣

∣
y(t) −

2
∑

m=1

αmsm2(t)
∣

∣

∣

2

dt. (7)

The number of branches results from the blockwise decoding and the correlation between the sent symbolss1r(t) ands2r(t).

A way to reduce the number of branches is to structurally decorrelate the signals sent by the two transmitting antennas, i.e. to

put to zero the inter-antenna correlation

α2α
∗

1

(2l+1)T
∫

2lT

s21(t)s
∗

11(t) dt + α1α
∗

2

(2l+1)T
∫

2lT

s11(t)s
∗

21(t) dt + α2α
∗

1

(2l+2)T
∫

(2l+1)T

s22(t)s
∗

12(t) dt + α1α
∗

2

(2l+2)T
∫

(2l+1)T

s12(t)s
∗

22(t) dt = 0. (8)

Pointwise orthogonality as defined in [8] is therefore a sufficient condition but not necessary. A less restrictiveL2 orthogo-

nality is also sufficient. From Eq. (8), the distance given inEq. (7) can then be simplified to

Dl =

(2l+1)T
∫

2lT

f11(t) + f21(t) − |y(t)|2 dt +

(2l+2)T
∫

(2l+1)T

f12(t) + f22(t) − |y(t)|2 dt (9)

with fmr(t) = |y(t)−αmsmr(t)|
2. When eachsmr(t) depends only ond2l+1 or d2l+2 the branches can be split and calculated

separately ford2l+1 and d2l+2. The complexity of the ML decision is reduced to2M . The complexity for detecting two

symbols is thus reduced frompMγ+1 to pMγ . The STC introduced by Wang and Xia [8] didn’t take full advantage of the

orthogonal design sincesmr(t) was depending on bothd2l+1 and d2l+2. The gain they obtained in [8] was then relying on

other properties of CPM, e.g. some restrictions put onq(t) andp. These restrictions may also be applied to our design code,

which would lead to additional complexity reduction. However, this is not in the scope of this paper and is be the subject of

another upcoming paper.

B. Orthogonality Condition

In this section we show howL2 orthogonality for CPM, i.e.‖S(t)‖2
L2

=
∫ (2l+2)T

2lT
S(t)SH(t) dt = 2I, can be obtained. As

such, the correlation between the two transmitting antennas per coding block is cancelled if

(2l+2)T
∫

2lT

s1r(t)s
∗

2r(t) dt =

(2l+1)T
∫

2lT

s11(t)s
∗

21(t) dt +

(2l+2)T
∫

(2l+1)T

s12(t)s
∗

22(t) dt = 0. (10)

Replacingsmr(t) by the corresponding CPM symbols from Eq. (4), we get

(2l+1)T
∫

2lT

exp
{

j2π
[

θ1(2l + 1) + h

2l+1
∑

i=2l+2−γ

d
(i)
1,1q(t − (i − 1)T ) + c1,1(t) − θ2(2l + 1) − h

2l+2
∑

i=2l+3−γ

d
(i)
2,1q(t − (i − 1)T ) − c2,1(t)

]

}

dt+

(2l+2)T
∫

(2l+1)T

exp
{

j2π
[

θ1(2l + 2) + h

2l+2
∑

i=2l+3−γ

d
(i)
1,2q(t − (i − 1)T )+c1,2(t) − θ2(2l + 2) − h

2l+1
∑

i=2l+2−γ

d
(i+1)
2,2 q(t − iT ) − c2,2(t)

]

dt
}

= 0. (11)
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The phase memoryθm(2l + r) is independent of time and has not to be considered for integration. Using Eq. (5) to replace
phase memoryθm(2l + 2) of the second time slot, we obtain

(2l+1)T
∫

2lT

exp
{

j2π
[

h

2l+1
∑

i=2l+2−γ

d
(i)
1,1q(t − (i − 1)T ) + c1,1(t) − h

2l+1
∑

i=2l+2−γ

d
(i)
2,1q(t − (i − 1)T ) − c2,1(t)

]

}

dt+

exp
{

j2π
[

ξ1(2l + 1) − ξ2(2l + 1)
]

}

·

(2l+1)T
∫

2lT

exp
{

j2π
[

h

2l+1
∑

i=2l+2−γ

d
(i+1)
1,2 q(t − (i − 1)T ) + c1,2(t + T )−

h

2l+1
∑

i=2l+2−γ

d
(i+1)
2,2 q(t − (i − 1)T ) − c2,2(t + T )

]

}

dt = 0. (12)

C. Simplifying assumptions

To simplify this expression, we factor Eq. (12) into a time independent and a time dependent part. For merging the two

integrals to one time dependent part, we have to mapd
(i)
m2 to d

(i)
m1 and cmr(t) to a differentcm′r′(t). Consequently, for the

data symbolsd(i)
mr there exist three possible ways of mapping:

• crosswise mapping with d
(i)
1,1 = d

(i)
2,2 andd

(i)
1,2 = d

(i)
2,1;

• repetitive mapping with d
(i)
1,1 = d

(i)
1,2 andd

(i)
2,1 = d

(i)
2,2;

• parallel mapping with d
(i)
1,1 = d

(i)
2,1 andd

(i)
1,2 = d

(i)
2,2 .

The same approach can be applied tocmr(t):

• crosswise mapping with c11(t) = −c22(t − T ) andc12(t) = −c21(t − T );

• repetitive mapping with c11(t) = c12(t − T ) andc21(t) = c22(t − T );

• parallel mapping with c11(t) = c21(t) andc12(t) = c22(t).

For each combination of mappings, Eq. (12) is now the productof two factors, one containing the integral and the other a

time independent part. To fulfill Eq. (12) it is sufficient if one factor is zero, namely1 + ej2π[ξ1(2l+1)−ξ2(2l+1)] = 0, i.e. if

k +
1

2
= ξ1(2l + 1) − ξ2(2l + 1) (13)

with k ∈ N. We thus get a very simple condition which only depends onξm(2l + 1).

D. Continuity of Phase

In this section we determine the functionsξm(2l + 1) to ensure the phase continuity.

Precisely, the phase of the CPM symbols has to be equal at all intersections of symbols. For an arbitrary blockl, it means

that φm1((2l + 1)T ) = φm2((2l + 1)T ). Using Eq. (4), it results in

ξm(2l + 1) = h

2l+1
∑

i=2l+2−γ

d
(i)
m,1q((2l + 2 − i)T ) + cm,1((2l + 1)T )− h

2l+2
∑

i=2l+3−γ

d
(i)
m2q((2l + 2 − i)T )− cm2((2l + 1)T ). (14)

For the second intersection at(2l + 2)T , sinceφm2((2l + 2)T ) = φm1((2l + 2)T ), we get

ξm(2l + 2) = h

2l+2
∑

i=2l+3−γ

d
(i)
m2q((2l + 3 − i)T ) + cm2((2l + 2)T )− h

2(l+1)+1
∑

i=2(l+1)+2−γ

d
(i)
m,1q((2l + 3 − i)T )− cm,1((2l + 2)T )]. (15)

Now, by choosing one of the mappings detailed in Section III,these equations can be greatly simplified. Hence, we have

all the tools to construct our code.

III. O RTHOGONAL SPACE TIME CODES

In this section we will have a closer look at two codes constructed under the afore-mentioned conditions.
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A. Existing Code

As a first example, we will give an alternative construction of the code given by Wang and Xia in [8]. Indeed, the pointwise

orthogonality condition used by Wang and Xia is a special case of theL2 orthogonality condition, hence, their ST-code can

be obtained within our framework.

For the first antenna Wang and Xia use a conventional CPM withd
(i)
1r = di for i = 2l + r +1− γ, 2l + r +2− γ, . . . , 2l + r

and c1r(t) = 0. The symbols of the second antenna are mappedcrosswise to the firstd(i)
21 = −di+1 for i = 2l + 2 − γ, 2l +

3− γ, . . . , 2l + 1 andd
(i−1)
22 = −di−1 for i = 2l + 3− γ, 2l + 4− γ, . . . , 2l + 2. Using this cross mapping makes it difficult to

computeξm(2l + 1) since the CPM typical order of the data symbols is mixed. Wangand Xia circumvent this by introducing

another correction factor for the second antenna

c2r(t)=

γ−1
∑

i=0

(h(d2l+1−i + d2l+2−i) + 1)q0(t − (2l + r − 1 − i)T ) (16)

By first computingξm(2l + 1) with Eq. (17) and then Eq. (13), we get theL2 orthogonality of the Wang-Xia-STC.

B. Parallel Code

To get a simpler correction factor as in [8], we designed a newcode based on theparallel structure which permits to

maintain the conventional CPM mapping for both antennas. Hence we choose the following mapping:d
(i)
m1 = d

(i−1)
m2 = di for

i = 2l + r + 1 − γ, 2l + r + 2 − γ, . . . , 2l + r. Then, Eq. (14) and (15) can be simplified into

ξm(2l + 1) =
h

2
d2l+2−γ + cm1((2l + 1)T ) − cm2((2l + 1)T ) (17)

ξm(2l + 2) =
h

2
d2l+3−γ + cm2((2l + 2)T ) − cm1((2l + 2)T ). (18)

With this simplified functions, the orthogonality condition only depends on the start and end values ofcmr(t), i.e.

k +
1

2
= c11((2l + 1)T )− c12((2l + 1)T )− c21((2l + 1)T ) + c22((2l + 1)T ). (19)

To merge the two integrals in Eq. (12) not only the mapping ofd
(i)
mr is necessary but also an equality between differentcmr(t).

From the three possible mappings, we choose therepeat mapping because of the possibility to setcmr(t) to zero for one

antenna. Hence we are able to send a conventional CPM signal on one antenna and a modified one on the second. Using Eq.

(19) and the equalities for the mapping, we can formulate thefollowing condition

k +
1

2
= c12(2lT )− c12((2l + 1)T )− c22(2lT ) + c22((2l + 1)T ). (20)

With c11(t) = c12(t) = 0, we can take forc21(t) = c22(t) any continuous function which is zero att = 0 and1/2 at t = T .

Another possibility is to choose the correction factor of the second antenna with a structure similar to CPM modulation,i.e.

c2r(t) =

2l+1
∑

i=2l+1−γ

q(t − (i − 1)T ) (21)

for (2l + r − 1)T ≤ t ≤ (2l + r)T . With this approach, the correction factors can be includedin a classical CPM modulation

with constant offset of1/h. This offset may also be expressed as a modified alphabet for the second antenna

Ωd2
= {−M + 1 +

1

h
,−M + 3 +

1

h
, . . . , M − 3 +

1

h
, M − 1 +

1

h
} (22)

Consequently, thisL2-orthogonal design may be seen as two conventional CPM designs with different alphabet setsΩd and

Ωd2 for each antenna. However, in this method, the constant offset to the phase may cause a shift in frequency. But as shown

by our simulations in the next section, this shift is quite moderate.

IV. SIMULATIONS

In this section we verify the proposed algorithm by simulations. Therefore a STC-2REC-CPM-sender with two transmitting

antennas has been implemented in MATLAB. For the signal of the first antenna we use conventional Gray-coded CPM with
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Fig. 2. Simulated BER for different numbers of Tx and Rx antennas of the proposed STC and of the Wang-Xia-STC
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Fig. 3. Simulated psd for each Tx antenna of the proposed STC (continuous line) and the Wang-Xia-STC (dashed line)

a modulation indexh = 1/2, the length of the phase response functionγ = 2 and an alphabet size ofM = 8. The signal of

the second antenna is modulated by a CPM with the same parameters but a different alphabetΩd2
, corresponding to Eq. (22).

The channel used is a frequency flat Rayleigh fading model with additive white Gaussian noise. The fading coefficientsαmn

are constant for the duration of a code block (block fading) and known at receiver (coherent detection). The received signal

yn(t) is demodulated by two filterbanks withpM2 filters, which are used to calculate the correlation betweenthe received

and candidate signals. Due to the orthogonality of the antennas each filterbank is independently applied to the corresponding

time slotk of the block code. The correlation is used as metric for the Viterbi algorithm (VA) which haspM states andM

paths leaving each state. In our simulation, the VA is truncated to a path memory of 10 code blocks, which means that we get

a decoding delay of2 · 10T .

From the simulation results given in Figure 2, we can reasonably assume that the proposed code achieves full diversity.

Indeed, the curves for the 2x1 and 2x2 systems respectively show a slope of 2 and 4. Moreover, the curve of the 2x1 systems

follows the same slope as the ST code proposed by Wang and Xia [8], which was proved to have full diversity. Note also that

the new code provides a slightly better performance.

A main reason of using CPM for STC is the spectral efficiency. Figure 3 show the simulated power spectral density (psd)
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for both Tx antennas of the proposed ST code (continuous line) and the ST code proposed by Wang and Xia [8]. The first

antenna of our approach uses a conventional CPM signal and hence shows an equal psd. The spectrum of the second antenna

is shifted due to adding an offsetcmr(t) with a non zero mean. Minimizing the difference between the two spectra by shifting

one, result in a phase difference of0.375 measured in normalized frequencyf ·Td, whereTd = T/ log2(M) is the bit symbol

length. The first antenna of the Wang-Xia-algorithm has almost the same psd while the spectrum of the second antenna is

shifted by approximately0.56f · Td. This means that the OSTC by Wang and Xia requires a slightly larger bandwidth than

our OSTC.

V. CONCLUSION

In applications where the power efficiency is crucial, combination of Continuous Phase Modulation and Space Time Coding
has the potential to provide high spectral efficiency, thanks to spatial diversity. To address this power efficiency, ST code design
for CPM has to ensure both low complexity decoding and full diversity. To fulfill these requirements, we have proposed a
new L2 orthogonality condition. We have shown that this conditionis sufficient to achieve low complexity ML decoding and
leads, with the help of simplifying assumption to a simple code. Moreover, simulations indicate that the code most probably
achieves full diversity. Further work will be concentratedon the design of other codes based onL2 orthogonality as in the
meanwhile, we have been able to obtain the design of full diversity, full rateL2 orthogonal codes for 3 antennas [10].
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