289 research outputs found
The effects of baicalein and baicalin on mitochondrial function and dynamics: A review
Mitochondria play an essential role in cell survival by providing energy, calcium buffering, and regulating apoptosis. A growing body of evidence shows that mitochondrial dysfunction and its consequences, including impairment of the mitochondrial respiratory chain, excessive generation of reactive oxygen species, and excitotoxicity, play a pivotal role in the pathogenesis of different diseases such as neurodegenerative diseases, neuropsychiatric disorders, and cancer. The therapeutical role of flavonoids on these diseases is gaining increasing acceptance. Numerous studies on experimental models have revealed the favorable role of flavonoids on mitochondrial function and structure. This review highlights the promising role of baicalin and its aglycone form, baicalein, on mitochondrial function and structure with a focus on its therapeutic effects. We also discuss their chemistry, sources and bioavailability
Interventional treatment of obesity and diabetes: An interim report on gastric electrical stimulation
The PPARγ Agonist Rosiglitazone Impairs Colonic Inflammation in Mice with Experimental Colitis
Various animal models showed that peroxisome proliferator-activated receptor (PPAR)γ agonists, when given as a gavage shortly preceding colitis induction, protect against inflammatory bowel disease (IBD). We have examined the effects of 16 days rosiglitazone treatment via the diet prior to dextran sodium sulphate (DSS)-induced colitis in mice. After 7 days DSS in the drinking water, rosiglitazone-fed mice had lost significantly more weight than control mice. Rosiglitazone-treated mice had more diarrhea, weight of colon and spleen were increased, and length of colon was decreased. Histology showed that rosiglitazone-treated mice had more severe colitis, mainly caused by more ulceration, crypt loss, and edema. Immunofluorescence showed a loss of tight junction structure Zonula Occludens protein 1 (ZO-1) in colons of rosiglitazone-treated mice as compared to control mice. Also, serum amyloid P component (SAP) concentrations in plasma were increased. However, concentrations of tumor necrosis factor (TNF)-α and interferon (IFN)-γ in colon homogenates, and TNF-α in spleen homogenates were significantly decreased, whereas interleukin (IL)-10 in spleen homogenates was increased. Other cytokines (IL-2, IL-4, IL-6, IL-12p70 and monocyte chemotactic protein (MCP)-1) and myeloperoxidase (MPO) concentrations showed no differences. In conclusion, 16 days pretreatment with rosiglitazone impaired DSS-induced colitis in mice
Correlations between endogen amylin hormone and some hormonal, biochemical and bone parameters in pullets
Pparγ2 Is a Key Driver of Longevity in the Mouse
Aging involves a progressive physiological remodeling that is controlled by both genetic and environmental factors. Many of these factors impact also on white adipose tissue (WAT), which has been shown to be a determinant of lifespan. Interrogating a transcriptional network for predicted causal regulatory interactions in a collection of mouse WAT from F2 crosses with a seed set of 60 known longevity genes, we identified a novel transcriptional subnetwork of 742 genes which represent thus-far-unknown longevity genes. Within this subnetwork, one gene was Pparg (Nr1c3), an adipose-enriched nuclear receptor previously not associated with longevity. In silico, both the PPAR signaling pathway and the transcriptional signature of Pparγ agonist rosiglitazone overlapped with the longevity subnetwork, while in vivo, lowered expression of Pparg reduced lifespan in both the lipodystrophic Pparg1/2-hypomorphic and the Pparg2-deficient mice. These results establish Pparγ2 as one of the determinants of longevity and suggest that lifespan may be rather determined by a purposeful genetic program than a random process
Sugar-sweetened carbonated beverage consumption correlates with BMI, waist circumference, and poor dietary choices in school children
<p>Abstract</p> <p>Background</p> <p>The prevalence of obesity and overweight is increasing globally. Frequently coexisting with under-nutrition in developing countries, obesity is a major contributor to chronic disease, and will become a serious healthcare burden especially in countries with a larger percentage of youthful population. 35% of the population of Saudi Arabia are under the age of 16, and adult dietary preferences are often established during early childhood years. Our objective was to examine the dietary habits in relation to body-mass-index (BMI) and waist circumference (W_C), together with exercise and sleep patterns in a cohort of male and female Saudi school children, in order to ascertain whether dietary patterns are associated with obesity phenotypes in this population.</p> <p>Methods</p> <p>5033 boys and 4400 girls aged 10 to 19 years old participated in a designed Food Frequency Questionnaire. BMI and W_C measurements were obtained and correlated with dietary intake.</p> <p>Results</p> <p>The overall prevalence of overweight and obesity was 12.2% and 27.0% respectively, with boys having higher obesity rates than girls (P ≤ 0.001). W_C and BMI was positively correlated with sugar-sweetened carbonated beverage (SSCB) intake in boys only. The association between male BMI and SSCB consumption was significant in a multivariate regression model (P < 0.0001). SSCB intake was positively associated with poor dietary choices in both males and females. Fast food meal intake, savory snacks, iced desserts and total sugar consumption correlated with SSCB intake in both boys (r = 0.39, 0.13, 0.10 and 0.52 respectively, P < 0.001) and girls (r = 0.45, 0.23, 0.16 and 0.55 respectively, P < 0.001). Older children reported eating significantly less fruit and vegetables than younger children; and less eggs, fish and cereals. Conversely, consumption of SSCB and sugar-sweetened hot beverages were higher in older versus younger children (P < 0.001). BMI and W_C were negatively correlated with hours of night-time sleep and exercise in boys, but only with night time sleep in girls, who also showed the lowest frequency of exercise.</p> <p>Conclusions</p> <p>A higher intake of SSCB is associated with poor dietary choices. Male SSCB intake correlates with a higher W_C and BMI. Limiting exposure to SSCB could therefore have a large public health impact.</p
Aerosolized Human Extracellular Superoxide Dismutase Prevents Hyperoxia-Induced Lung Injury
An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2′-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS)
Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents
<p>Abstract</p> <p>Background</p> <p>Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents.</p> <p>Methods</p> <p>An analytical, cross-sectional and population-based study was performed in forty-four public primary schools in Campeche City, Mexico. A total of 466 obese children and adolescents between 11-13 years of age were recruited. Fasting glucose and insulin concentrations, high density lipoprotein cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressures were measured; insulin resistance and metabolic syndrome were also evaluated.</p> <p>Results</p> <p>Out of the total population studied, 69% presented low values of high density lipoprotein cholesterol, 49% suffered from abdominal obesity, 29% had hypertriglyceridemia, 8% presented high systolic and 13% high diastolic blood pressure, 4% showed impaired fasting glucose, 51% presented insulin resistance and 20% metabolic syndrome. In spite of being obese, 13% of the investigated population did not present any metabolic disorder. For each one of the components of the metabolic syndrome, when insulin resistance increased so did odds ratios as cardiometabolic risk factors.</p> <p>Conclusions</p> <p>Regardless of age and gender an increased degree of insulin resistance is associated with a higher prevalence of disorders in each of the components of the metabolic syndrome and with a heightened risk of suffering metabolic syndrome among obese children and adolescents.</p
Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity
AIMS/HYPOTHESIS: Insulin controls glucose metabolism via multiple signalling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway in muscle and adipose tissue. The protein/lipid phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) attenuates PI3K signalling by dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate generated by PI3K. The current study was aimed at investigating the effect of haploinsufficiency for Pten on insulin-stimulated glucose uptake. MATERIALS AND METHODS: Insulin sensitivity in Pten heterozygous (Pten(+/−)) mice was investigated in i.p. insulin challenge and glucose tolerance tests. Glucose uptake was monitored in vitro in primary cultures of myocytes from Pten(+/−) mice, and in vivo by positron emission tomography. The phosphorylation status of protein kinase B (PKB/Akt), a downstream signalling protein in the PI3K pathway, and glycogen synthase kinase 3β (GSK3β), a substrate of PKB/Akt, was determined by western immunoblotting. RESULTS: Following i.p. insulin challenge, blood glucose levels in Pten(+/−) mice remained depressed for up to 120 min, whereas glucose levels in wild-type mice began to recover after approximately 30 min. After glucose challenge, blood glucose returned to normal about twice as rapidly in Pten(+/−) mice. Enhanced glucose uptake was observed both in Pten(+/−) myocytes and in skeletal muscle of Pten(+/−) mice by PET. PKB and GSK3β phosphorylation was enhanced and prolonged in Pten(+/−) myocytes. CONCLUSIONS/INTERPRETATION: Pten is a key negative regulator of insulin-stimulated glucose uptake in vitro and in vivo. The partial reduction of Pten due to Pten haploinsufficiency is enough to elicit enhanced insulin sensitivity and glucose tolerance in Pten(+/−) mice
- …
