10 research outputs found

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes

    Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR)

    No full text
    International audienc

    Results of the 2017 inspection campaign of French phase I/II research sites in Île-de-France following the BIA 10-2474 accident: Medical vs. regulatory relevance

    No full text
    International audienceAimsFollowing the serious adverse events that occurred in January 2016 during the BIA 10-2474 First-in-Human study, the French Ministry of Health asked the Regional Health Agencies to inspect operations at all research sites conducting phase I/II clinical trials of experimental drugs. The aim of this study was to assess the medical relevance of the inspections made in Île-de-France (Paris region) in 2017.MethodsAll 30 sites of Île-de-France region fully authorized to perform phase I/II trials were inspected by a public health physician and a public health pharmacist. Their reported list of observations was submitted to three physicians with longstanding experience of early pharmacology studies performed in academic or private research facilities. These physicians were asked to adjudicate each observation according to their perceived medical importance regarding safety. Adjudications were first performed separately and disagreements were later settled during a final adjudication meeting.ResultsAt least one disagreement occurred initially among the 3 adjudicators for 84 of the 120 observations (70%) reported by the inspectors. Following reconciliation, the 3 physicians agreed that 20% of the observations were likely to have potentially serious medical consequences. These observations mainly concerned the management of emergencies and of serious adverse events and the continuity of care.ConclusionsMaintenance of on-site inspections periodically carried out by regulatory authorities granting authorisations to perform phase I/II trials are justified. However, the medical relevance of these inspections can be improved with more emphasis on factors affecting the safety of research participants than on administrative or purely regulatory issues

    Assessing the roles of temperature, carbon inputs and airborne pollen as drivers of fructification in European temperate deciduous forests

    No full text
    International audienceWe aimed at identifying which drivers control the spatio-temporal variability of fruit production in three major European temperate deciduous tree species: Quercus robur, Quercus petraea, and Fagus sylvatica. • We analysed the relations of fruit production with airborne pollen, carbon and water resources and meteorological data in 48 French forests over 14 years (1994-2007). • In oak, acorn production was mainly related to temperature conditions during the pollen emission period, supporting the pollen synchrony hypothesis. In beech, a temperature signal over the two previous years eclipsed the airborne pollen load. • Fruit production in Quercus and Fagus was related to climate drivers, carbon inputs and airborne pollen through strongly non-linear, genus-specific relations. • Quercus and Fagus also differed as regards the secondary growth vs. fructification trade-off. While negative relationships were observed between secondary growth and fruit production in beech, more productive years benefited to both secondary growth and reproductive effort in oak

    GIS Coop: networks of silvicultural trials for supporting forest management under changing environment

    No full text
    International audienceContext: To understand the dynamics of forest management systems and build adapted growth models for new forestry practices, long-term experiment networks remain more crucial than ever.Aims: Two principles are at the basis of the experimental design of the networks of the Scientific Interest Group Cooperative for data on forest tree and stand growth (GIS Coop): contrasted and extreme silvicultural treatments in diverse pedoclimatic contexts.Methods: Various forest management systems are under study: regular and even-aged stands of Douglas fir, sessile and pedunculate oaks, Maritime and Laricio pines, mixed stands of sessile oak, European silver fir, and Douglas fir combined with other species. Highly contrasted stand density regimes, from open growth to self-thinning, are formalized quantitatively.Results: One hundred and eighty-five sites representing a total of 1206 plots have been set up in the last 20 years, where trees are measured regularly (every 3 to 10 years). The major outputs of these networks for research and management are the calibration/validation of growth and yield models and the drawing up of forest management guides.Conclusion: The GIS Coop adapts its networks so that they can contribute to develop growth models that explicitly integrate pedoclimatic factors and thus also contribute to research on the sustainability of ecosystems under environmental and socio-economic changes

    Outcome of SARS-CoV-2 infection linked to MAIT cell activation and cytotoxicity: evidence for an IL-18 dependent mechanism

    No full text
    International audienceImmune system dysfunction is paramount in Coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in a cohort of 182 patients including patients at various stages of disease activity. A profound decrease of MAIT cell counts in blood of critically ill patients was observed. These cells showed a strongly activated and cytotoxic phenotype that positively correlated with circulating pro-inflammatory cytokines, notably IL-18. MAIT cell alterations markedly correlated with disease severity and patient mortality. SARS-CoV-2-infected macrophages activated MAIT cells in a cytokine-dependent manner involving an IFNα-dependent early phase and an IL-18-induced later phase. Therefore, altered MAIT cell phenotypes represent valuable biomarkers of disease severity and their therapeutic manipulation might prevent the inflammatory phase involved in COVID-19 aggravation

    Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe

    Get PDF
    Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.ISSN:0048-9697ISSN:1879-102

    Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at (s)\sqrt(s) = 0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung
    corecore