6,845 research outputs found

    The new Toulouse-Geneva Stellar Evolution Code including radiative accelerations of heavy elements

    Full text link
    Atomic diffusion has been recognized as an important process that has to be considered in any computations of stellar models. In solar-type and cooler stars, this process is dominated by gravitational settling, which is now included in most stellar evolution codes. In hotter stars, radiative accelerations compete with gravity and become the dominant ingredient in the diffusion flux for most heavy elements. Introducing radiative accelerations into the computations of stellar models modifies the internal element distribution and may have major consequences on the stellar structure. Coupling these processes with hydrodynamical stellar motions has important consequences that need to be investigated in detail. We aim to include the computations of radiative accelerations in a stellar evolution code (here the TGEC code) using a simplified method (SVP) so that it may be coupled with sophisticated macroscopic motions. We also compare the results with those of the Montreal code in specific cases for validation and study the consequences of these coupled processes on accurate models of A- and early-type stars. We implemented radiative accelerations computations into the Toulouse-Geneva stellar evolution code following the semi-analytical prescription proposed by Alecian and LeBlanc. This allows more rapid computations than the full description used in the Montreal code. We present results for A-type stellar models computed with this updated version of TGEC and compare them with similar published models obtained with the Montreal evolution code. We discuss the consequences for the coupling with macroscopic motions, including thermohaline convection.Comment: 12 pages, 13 figures, published in A&

    A low-delay 8 Kb/s backward-adaptive CELP coder

    Get PDF
    Code excited linear prediction coding is an efficient technique for compressing speech sequences. Communications quality of speech can be obtained at bit rates below 8 Kb/s. However, relatively large coding delays are necessary to buffer the input speech in order to perform the LPC analysis. A low delay 8 Kb/s CELP coder is introduced in which the short term predictor is based on past synthesized speech. A new distortion measure that improves the tracking of the formant filter is discussed. Formal listening tests showed that the performance of the backward adaptive coder is almost as good as the conventional CELP coder

    In vivo nuclear magnetic resonance imaging

    Get PDF
    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle

    Signatures of superconducting gap inhomogeneities in optical properties

    Full text link
    Scanning tunneling spectroscopy applied to the high-TcT_{c} cuprates has revealed significant spatial inhomogeneity on the nanoscale. Regions on the order of a coherence length in size show variations of the magnitude of the superconducting gap of order ±20\pm20% or more. An important unresolved question is whether or not these variations are also present in the bulk, and how they influence superconducting properties. As many theories and data analyses for high-TcT_{c} superconductivity assume spatial homogeneity of the gap magnitude, this is a pressing question. We consider the far-infrared optical conductivity and evaluate, within an effective medium approximation, what signatures of spatial variations in gap magnitude are present in various optical quantities. In addition to the case of d-wave superconductivity, relevant to the high-TcT_c cuprates, we have also considered s-wave gap symmetry in order to provide expected signatures of inhomogeneities for superconductors in general. While signatures of gap inhomogeneities can be strongly manifested in s-wave superconductors, we find that the far-infrared optical conductivity in d-wave is robust against such inhomogeneity.Comment: 8 pages, 7 figure

    Symmetry Breaking in the Schr\"odinger Representation for Chern-Simons Theories

    Full text link
    This paper discusses the phenomenon of spontaneous symmetry breaking in the Schr\"odinger representation formulation of quantum field theory. The analysis is presented for three-dimensional space-time abelian gauge theories with either Maxwell, Maxwell-Chern-Simons, or pure Chern-Simons terms as the gauge field contribution to the action, each of which leads to a different form of mass generation for the gauge fields.Comment: 16pp, LaTeX , UCONN-94-
    • …
    corecore