41 research outputs found
Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors
In high Tc superconductors the magnetic and electronic properties are
determined by the probability that valence electrons virtually jump from site
to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion
and favored by hopping integrals. The spatial extent of the latter is related
to transport properties, including superconductivity, and to the dispersion
relation of spin excitations (magnons). Here, for three antiferromagnetic
parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer
Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical
atoms, we compare the magnetic spectra measured by resonant inelastic x-ray
scattering over a significant portion of the reciprocal space and with
unprecedented accuracy. We observe that the absence of apical oxygens increases
the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D
exchange-bond network. These results establish a corresponding relation between
the exchange interactions and the crystal structure, and provide fresh insight
into the materials dependence of the superconducting transition temperature.Comment: 9 pages, 4 figures, 1 Table, 42 reference
Performance of the ROX index to predict intubation in immunocompromised patients receiving high-flow nasal cannula for acute respiratory failure
Background Delayed intubation is associated with high mortality. There is a lack of objective criteria to decide the time of intubation. We assessed a recently described combined oxygenation index (ROX index) to predict intubation in immunocompromised patients. The study is a secondary analysis of randomized trials in immunocompromised patients, including all patients who received high-flow nasal cannula (HFNC). The first objective was to evaluate the accuracy of the ROX index to predict intubation for patients with acute respiratory failure. Results In the study, 302 patients received HFNC. Acute respiratory failure was mostly related to pneumonia (n = 150, 49.7%). Within 2 (1-3) days, 115 (38.1%) patients were intubated. The ICU mortality rate was 27.4% (n = 83). At 6 h, the ROX index was lower for patients who needed intubation compared with those who did not [4.79 (3.69-7.01) vs. 6.10 (4.48-8.68), p < 0.001]. The accuracy of the ROX index to predict intubation was poor [AUC = 0.623 (0.557-0.689)], with low performance using the threshold previously found (4.88). In multivariate analysis, a higher ROX index was still independently associated with a lower intubation rate (OR = 0.89 [0.82-0.96], p = 0.04). Conclusion A ROX index greater than 4.88 appears to have a poor ability to predict intubation in immunocompromised patients with acute respiratory failure, although it remains highly associated with the risk of intubation and may be useful to stratify such risk in future studies
In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy
Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos
Effect of coherent and incoherent precipitates upon the stress and strain fields of 6xxx aluminium alloys: a numerical analysis
International audienc