67 research outputs found

    VLBI for Gravity Probe B. V. Proper Motion and Parallax of the Guide Star, IM Pegasi

    Get PDF
    We present the principal astrometric results of the very-long-baseline interferometry (VLBI) program undertaken in support of the Gravity Probe B (GP-B) relativity mission. VLBI observations of the GP-B guide star, the RS CVn binary IM Pegasi (HR 8703), yielded positions at 35 epochs between 1997 and 2005. We discuss the statistical assumptions behind these results and our methods for estimating the systematic errors. We find the proper motion of IM Peg in an extragalactic reference frame closely related to the International Celestial Reference Frame 2 (ICRF2) to be -20.83 +- 0.03 +- 0.09 mas/yr in right ascension and -27.27 +- 0.03 +- 0.09 mas/yr in declination. For each component the first uncertainty is the statistical standard error and the second is the total standard error (SE) including plausible systematic errors. We also obtain a parallax of 10.37 +- 0.07 mas (distance: 96.4 +- 0.7 pc), for which there is no evidence of any significant contribution of systematic error. Our parameter estimates for the ~25-day-period orbital motion of the stellar radio emission have SEs corresponding to ~0.10 mas on the sky in each coordinate. The total SE of our estimate of IM Peg's proper motion is ~30% smaller than the accuracy goal set by the GP-B project before launch: 0.14 mas/yr for each coordinate of IM Peg's proper motion. Our results ensure that the uncertainty in IM Peg's proper motion makes only a very small contribution to the uncertainty of the GP-B relativity tests.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    VLBI for Gravity Probe B. VII. The Evolution of the Radio Structure of IM Pegasi

    Full text link
    We present measurements of the total radio flux density as well as very-long-baseline interferometry (VLBI) images of the star, IM Pegasi, which was used as the guide star for the NASA/Stanford relativity mission Gravity Probe B. We obtained flux densities and images from 35 sessions of observations at 8.4 GHz (wavelength = 3.6 cm) between 1997 January and 2005 July. The observations were accurately phase-referenced to several extragalactic reference sources, and we present the images in a star-centered frame, aligned by the position of the star as derived from our fits to its orbital motion, parallax, and proper motion. Both the flux density and the morphology of IM Peg are variable. For most sessions, the emission region has a single-peaked structure, but 25% of the time, we observed a two-peaked (and on one occasion perhaps a three-peaked) structure. On average, the emission region is elongated by 1.4 +- 0.4 mas (FWHM), with the average direction of elongation being close to that of the sky projection of the orbit normal. The average length of the emission region is approximately equal to the diameter of the primary star. No significant correlation with the orbital phase is found for either the flux density or the direction of elongation, and no preference for any particular longitude on the star is shown by the emission region.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    Testing general relativity by micro-arcsecond global astrometry

    Full text link
    The global astrometric observations of a GAIA-like satellite were modeled within the PPN formulation of Post-Newtonian gravitation. An extensive experimental campaign based on realistic end-to-end simulations was conducted to establish the sensitivity of global astrometry to the PPN parameter \gamma, which measures the amount of space curvature produced by unit rest mass. The results show that, with just a few thousands of relatively bright, photometrically stable, and astrometrically well behaved single stars, among the ~10^9 objects that will be observed by GAIA, \gamma can be estimated after 1 year of continuous observations with an accuracy of ~10^{-5} at the 3\sigma level. Extrapolation to the full 5-year mission of these results based on the scaling properties of the adjustment procedure utilized suggests that the accuracy of \simeq 2x10^{-7}, at the same 3\sigma level, can be reached with \~10^6 single stars, again chosen as the most astrometrically stable among the millions available in the magnitude range V=12-13. These accuracies compare quite favorably with recent findings of scalar-tensor cosmological models, which predict for \gamma a present-time deviation, |1-\gamma|, from the General Relativity value between 10^{-5} and 10^{-7}.Comment: 7 pages, 2 figures, to be published in A&

    VLBI for Gravity Probe B. I. Overview

    Get PDF
    We describe the NASA/Stanford gyroscope relativity mission, Gravity Probe B (GP-B), and provide an overview of the following series of six astrometric and astrophysical papers that report on our radio observations and analyses made in support of this mission. The main goal of this 8.5 year program of differential VLBI astrometry was to determine the proper motion of the guide star of the GP-B mission, the RS CVn binary IM Pegasi (IM Peg; HR 8703). This proper motion is determined with respect to compact, extragalactic reference sources. The results are: -20.833 +- 0.090 mas/yr and -27.267 +- 0.095 mas/yr for, respectively, the right ascension and declination, in local Cartesian coordinates, of IM Peg's proper motion, and 10.370 +- 0.074 mas (i.e., 96.43 +- 0.69 pc) for its parallax (and distance). Each quoted uncertainty is meant to represent an ~70% confidence interval that includes the estimated contribution from systematic error. These results are accurate enough not to discernibly degrade the GP-B estimates of its gyroscopes' relativistic precessions: the frame-dragging and geodetic effects.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    VLBI for Gravity Probe B. III. A Limit on the Proper Motion of the "Core" of the Quasar 3C 454.3

    Get PDF
    We made VLBI observations at 8.4 GHz between 1997 and 2005 to estimate the coordinates of the "core" component of the superluminal quasar, 3C 454.3, the ultimate reference point in the distant universe for the NASA/Stanford Gyroscope Relativity Mission, Gravity Probe B. These coordinates are determined relative to those of the brightness peaks of two other compact extragalactic sources, B2250+194 and B2252+172, nearby on the sky, and within a celestial reference frame (CRF), defined by a large suite of compact extragalactic radio sources, and nearly identical to the International Celestial Reference Frame 2 (ICRF2). We find that B2250+194 and B2252+172 are stationary relative to each other, and also in the CRF, to within 1-sigma upper limits of 15 and 30 micro-arcsec/yr in RA and decl., respectively. The core of 3C 454.3 appears to jitter in its position along the jet direction over ~0.2 mas, likely due to activity close to the putative supermassive black hole nearby, but on average is stationary in the CRF within 1-sigma upper limits on its proper motion of 39 micro-arcsec/yr (1.0c) and 30 micro-arcsec/yr (0.8c) in RA and decl., respectively, for the period 2002 - 2005. Our corresponding limit over the longer interval, 1998 - 2005, of more importance to GP-B, is 46 and 56 micro-arcsec/yr in RA and decl., respectively. Some of 3C 454.3's jet components show significantly superluminal motion with speeds of up to ~200 micro-arcsec/yr or 5c in the CRF. The core of 3C 454.3 thus provides for Gravity Probe B a sufficiently stable reference in the distant universe.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    VLBI for Gravity Probe B. VI. The Orbit of IM Pegasi and the Location of the Source of Radio Emission

    Get PDF
    We present a physical interpretation for the locations of the sources of radio emission in IM Pegasi (IM Peg, HR 8703), the guide star for the NASA/Stanford relativity mission Gravity Probe B. This emission is seen in each of our 35 epochs of 8.4-GHz VLBI observations taken from 1997 to 2005. We found that the mean position of the radio emission is at or near the projected center of the primary to within about 27% of its radius, identifying this active star as the radio emitter. The positions of the radio brightness peaks are scattered across the disk of the primary and slightly beyond, preferentially along an axis with position angle, p.a. = (-38 +- 8) deg, which is closely aligned with the sky projections of the orbit normal (p.a. = -49.5 +- 8.6 deg) and the expected spin axis of the primary. Comparison with simulations suggests that brightness peaks are 3.6 (+0.4,-0.7) times more likely to occur (per unit surface area) near the pole regions of the primary (|latitude| >= 70 deg) than near the equator (|latitude| <= 20 deg), and to also occur close to the surface with ~2/3 of them at altitudes not higher than 25% of the radius of the primary.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie
    • …
    corecore