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ABSTRACT

We present measurements of the total radio flux density as well as very long baseline interferometry images of the
star, IM Pegasi, which was used as the guide star for the NASA/Stanford relativity mission Gravity Probe B. We
obtained flux densities and images from 35 sessions of observations at 8.4 GHz (λ = 3.6 cm) between 1997 January
and 2005 July. The observations were accurately phase-referenced to several extragalactic reference sources, and we
present the images in a star-centered frame, aligned by the position of the star as derived from our fits to its orbital
motion, parallax, and proper motion. Both the flux density and the morphology of IM Peg are variable. For most
sessions, the emission region has a single-peaked structure, but 25% of the time, we observed a two-peaked (and
on one occasion perhaps a three-peaked) structure. On average, the emission region is elongated by 1.4 ± 0.4 mas
(FWHM), with the average direction of elongation being close to that of the sky projection of the orbit normal. The
average length of the emission region is approximately equal to the diameter of the primary star. No significant
correlation with the orbital phase is found for either the flux density or the direction of elongation, and no preference
for any particular longitude on the star is shown by the emission region.

Key words: binaries: close – radio continuum: stars – stars: activity – stars: imaging – stars: individual (IM Pegasi)
– techniques: interferometric

Online-only material: animation

1. INTRODUCTION

IM Pegasi (hereafter IM Peg; HR 8703, HD 216489,
FK5 3829) is a close binary RS Canum Venaticorum (RS CVn)
star (Hall 1976). This star was chosen as the reference star
for Gravity Probe B (GP-B), the space-borne relativity experi-
ment developed by NASA and Stanford University; for an in-
troduction to GP-B, see Shapiro et al. (2012), hereafter Paper I.
The GP-B experiment required a very accurate measurement
of the proper motion of the guide star, which was determined
by using phase-referenced very long baseline interferometry
(VLBI) measurements relative to the compact extragalactic ob-
jects 3C 454.3, QSO B2250+194, and B2252+172. This paper is
the seventh and last in a series describing the GP-B experiment
and the astrometric observations carried out in its support. The
first, mentioned above (Paper I), contains a general introduction.
The radio structure and astrometric stability of the reference
sources are described in Papers II (Ransom et al. 2012a) and III
(Bartel et al. 2012), respectively. The astrometric process and
results are described in Paper IV (Lebach et al. 2012), Paper V
(Ratner et al. 2012), and Paper VI (Ransom et al. 2012b). Early
results on radio imaging and astrometry of IM Peg were pre-
sented in Ransom et al. (2005) and a brief overview was given
in Bartel et al. (2008).

In this paper, we discuss the unprecedented sequence of
VLBI images of IM Peg obtained as a result of our VLBI
observations. These images, which have resolutions (east–west)
typically about equal to the stellar angular radius, were obtained

3 Now also at Hartebeesthoek Radio Astronomy Observatory, PO Box 443,
Krugersdorp 1740, South Africa.
4 Now at Okanagan College, 583 Duncan Avenue West, Penticton, BC V2A
2K8, Canada and also at the National Research Council of Canada, Herzberg
Institute of Astrophysics, Dominion Radio Astrophysical Observatory, PO Box
248, Penticton, BC V2A 6K3, Canada.

in addition to the astrometry required for the GP-B project.
This set of images is the most extensive available for any radio
star.5 RS CVn stars are known to have strong and relatively
compact radio emission, and to be variable in radio flux density
on timescales of an hour or even less (e.g., Lebach et al. 1999;
Jones et al. 1996; Hjellming 1988; Dulk 1985; Mutel et al.
1985). For other VLBI images of RS CVn stars, we refer the
interested reader to Ransom et al. (2002, 2003), Lestrade et al.
(1995), Massi et al. (1988), and Mutel et al. (1985).

The guide star IM Peg is at a distance of 96.4 ± 0.7 pc
(from VLBI parallax measurement; Hipparcos optical parallax
measurements by ESA 1997 gave a consistent measure of this
distance, albeit with rather larger uncertainties; see Paper V).
The star has an orbital period of ∼25 days. The primary is
a K2 III star with a mass of 1.8 ± 0.2 M� and an effective
temperature ranging from ∼3500 to 5100 K (Berdyugina et al.
2000). It rotates rapidly, with v sin i ∼ 27 km s−1 (Berdyugina
et al. 2000), and its radius is 13.3 ± 0.6 R� (Berdyugina et al.
1999b), so its angular diameter would be 1.28 ± 0.06 mas
on the sky. The secondary, first spectroscopically detected
by Marsden et al. (2005), has a mass of ∼1 M� and an
effective temperature of ∼5650 K. The orbit has been accurately
determined using optical spectroscopy, and here we use the
parameters given in Marsden et al. (2005; see also Berdyugina
et al. 1999b), namely, a period of 24.64877 ± 0.00003 days, with
a (heliocentric) time for superior conjunction of the primary,
with the primary at maximum distance from us, being the Julian
date 2,450,342.905±0.004 and an orbital eccentricity6 of 0. The
inclination angle of the orbit to the plane of the sky as determined

5 We note that Peterson et al. (2011) have made VLBI observations of the
Algol and UX Arietis systems with slightly fewer epochs per source, but with
coverage over longer spans of time.
6 Berdyugina & Marsden (2006) suggest that the orbital eccentricity is 0.017;
such a small deviation from 0 would not affect any of our conclusions.
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from our fit of the orbit to the positions determined by VLBI is
73◦ ± 8◦ and the position angle (P.A.) of the ascending node
is 41◦ ± 9◦ (Paper V). This value is consistent with the earlier
lower limit of 55◦ set by Lebach et al. (1999), and is in good
agreement with the range of 65◦ and 80◦ determined from optical
observations (Berdyugina et al. 1999a).

In the optical, brightness variations of ∼0.3 mag have been
observed (Paper I; Ribárik et al. 2003; Strassmeier et al. 1997).
Doppler imaging and photometry have shown that there are dark
spots, which cover ∼15% of the star’s surface, with temperatures
more than 1500 K lower than the average. These spots persist
over several orbital periods, although they seem to drift slowly
on the surface of the star with respect to its orbital phase (Zellem
et al. 2010; Berdyugina & Marsden 2006; Ribárik et al. 2003;
Berdyugina et al. 2000)

2. OBSERVATIONS AND DATA REDUCTION

The VLBI observations of IM Peg were carried out in
35 observing sessions between 1997 and 2005, using a global
array of radio telescopes, at a frequency of 8.4 GHz. A fuller
description of the VLBI observations as well as the basic data
reduction is given in Paper II.

The National Radio Astronomy Observatory’s phased Very
Large Array (VLA) took part in 32 of the 35 sets of VLBI
observations. By using the interferometric data from the VLA,
we obtained accurate total flux-density measurements during
the VLBI observations. We reduced the VLA data following
standard procedures using NRAO’s AIPS software package,
with the amplitudes calibrated by using observations of the
standard flux-density calibrators (3C 286 and 3C 48) and the
scale of Baars et al. (1977). The flux densities were determined
from images made from data which we self-calibrated in phase
but not in amplitude. Since, for the majority of our observing
sessions, the flux density varied significantly during the session,
we list in Table 1 the maximum and minimum flux densities
during each observing session as estimated from the light curves,
along with the corresponding calendar date and Modified Julian
date (MJD) of the midpoint of the observing session. We also list
the fractional circular polarization, mc. The circular polarization
was calibrated by assuming that the calibrator sources have
mc = 0 and by ignoring the leakage terms in the polarization
response of the VLA antennas. The first of these assumptions
is generally true to better than 1% (Rayner et al. 2000), and the
effect of the leakage terms at the VLA also has an effect of <1%
on the derived values of mc. For the session of 2004 March 6,
we performed a full polarization calibration and determined the
leakage terms. We found that IM Peg had no detectable linear
polarization.

Turning again to the VLBI data, we used phase-referenced
astrometry, as described in Papers IV and V, to determine
with unprecedented accuracy the proper motion of IM Peg.
In particular, we estimated separately the star’s secular proper
motion, its projected orbit, and its parallax, all with respect
to extragalactic reference sources. Knowledge of this proper
motion and parallax allows us to place all the VLBI images of
IM Peg in a star-centered frame. In particular, our solution for
the overall motion of IM Peg allows us to estimate the position of
the star’s center for each observing session with a 1σ uncertainty
of �0.30 mas in an extragalactic frame (Paper V).

Our final images were phase-referenced to a near-stationary
feature in the brightness distribution of the quasar 3C 454.3.
As the astrometry was expected to be critical for the success
of the GP-B project, it was done more elaborately than usual.

Table 1
Observing Sessions and Radio Flux Densities at 8.4 GHz

Date MJD Orbital Total Flux Densityb Fractional Circular
Phasea Minimum Maximum Polarization, mc

c

(mJy) (mJy) (%)

1997 Jan 16 50464.90 0.97 18 46 −0.5 ± 2.0
1997 Jan 18 50466.89 0.05 6.8 21 −1.5 ± 2.0
1997 Nov 30 50782.03 0.84 8.5 13 −1.4 ± 2.0
1997 Dec 21 50803.96 0.73 48 76 −2.7 ± 2.0
1997 Dec 27 50809.96 0.97 8.4 18 2.9 ± 2.0
1998 Mar 1 50873.78 0.56 1.1 24 3.6 ± 2.0
1998 Jul 12 51006.41 0.94 1.8 2.4 −3.7 ± 2.0
1998 Aug 8 51033.35 0.03 2.9 16 1.9 ± 2.0
1998 Sep 17 51073.24 0.65 11 28 3.6 ± 2.0
1999 Mar 13 51250.74 0.85 0.7 3.3 0.9 ± 2.0
1999 May 15 51313.57 0.40 2.0 7.3 4.7 ± 2.0
1999 Sep 19 51440.23 0.54 12 25 −0.9 ± 2.0
1999 Dec 9 51521.99 0.86 2.1 3.8 1.2 ± 2.0
2000 May 15 51679.56 0.25 0.2 0.9 12.3 ± 3.7
2000 Aug 7 51763.34 0.65 8.0 58 0.3 ± 2.0
2000 Nov 6 51854.09 0.33 0.6 5.7 2.0 ± 2.0
2000 Nov 7 51855.01 0.37 8.4 10.6 −0.5 ± 2.0
2001 Mar 31 51999.73 0.24 0.3 0.3 10.4 ± 9.7
2001 Jun 29 52089.48 0.88 0.4 1.0 −20.1 ± 4.0
2001 Oct 20 52202.05 0.45 4.2 8.1 −4.3 ± 2.0
2001 Dec 21 52264.99 1.00 1.2 1.2 5.5 ± 2.1
2002 Apr 14 52378.65 0.61 0.3 0.6 16.3 ± 3.6
2002 Jul 14 52469.40 0.29 0.47d 0.47
2002 Nov 21 52599.06 0.55 0.32d 0.32
2003 Jan 26 52665.88 0.26 0.20 0.28 1.0 ± 5.8
2003 May 18 52777.55 0.79 1.0 1.1 15.0 ± 5.0
2003 Sep 9 52891.24 0.41 0.5 0.7 13.3 ± 3.2
2003 Dec 6 52979.00 0.97 0.9d 0.9
2004 Mar 6 53070.76 0.69 8.0 19 −0.5 ± 2.0
2004 May 18 53143.58 0.64 10 12 −1.4 ± 2.0
2004 Jun 26 53182.49 0.22 5.0 12 0.9 ± 2.0
2004 Dec 12 53351.00 0.06 0.7 1.1 −6.3 ± 2.9
2005 Jan 15 53385.92 0.48 0.25 0.35 44.3 ± 5.9
2005 May 28 53518.45 0.86 0.25 0.85 27.9 ± 5.5
2005 Jul 16 53567.41 0.84 0.24 0.36 44.6 ± 7.7

Notes.
a The orbital phase for the midpoint of our observing session, in fractions of an
orbit period, as determined from the orbit of Marsden et al. (2005).
b Minimum and maximum total radio flux densities during the observing session,
estimated from the light curves from concurrent VLA measurements, after
boxcar smoothing with a window about 20 minute wide, except for the noted
sessions where the flux densities were estimated from the VLBI measurements.
The measurement uncertainties in the flux densities are usually dominated by
the systematic uncertainty in the flux-density calibration which we take to be
5% for the VLA and 10% for VLBI. We do not list the uncertainties because
the intrinsic variability of IM Peg on short time scales is generally larger than
the measurement uncertainty.
c Average of the fractional circular polarization, mc (labeled FCP; IEEE
convention), during the observing session, in %. We adopt a minimum 1σ

uncertainty in the circular polarization of 2%.
d Flux densities determined from VLBI measurements.

We used both phase-referenced mapping and parametric model
fits to the measured fringe phases using a Kalman filter. The
fringe and phase calibration used for the final images in this
paper is the same as was used to obtain our final astrometric
results, and involved a combination of both these methods. The
two methods and their relative advantages, as well as a new
combination of the two, are described in Paper IV. We carried
out amplitude calibration in AIPS, using CLEAN models of
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the calibrator sources, 3C 474.3, B2250+194, and B2252+172
(see Papers II and III). The resulting phase-referenced images
of IM Peg should represent a relatively unbiased estimate of the
source brightness distribution, since the calibration was derived
without any reference to the IM Peg visibilities. In particular, no
spurious symmetrization should have occurred, as often results
from self-calibration that is based on an initial point-source
model (see Massi & Aaron 1999), nor should any reduction
of the circular polarization have taken place, as can occur when
one performs amplitude self-calibration. We note that as with the
VLA data above, we have assumed that our calibrator sources
had mc = 0, which is unlikely to introduce errors of >1% in
our circular polarization images of IM Peg. Furthermore, any
motion of the radio emission during the course of an observing
session has not been significantly suppressed by self-calibration
in phase.

3. RESULTS

3.1. Total Flux Densities

We determined the total radio flux density of IM Peg during
each of our observing sessions, in most cases from VLA
observations. IM Peg’s flux density varied detectably during
almost all observing sessions, with variations on timescales as
short as ∼30 minutes, and over a range in flux density exceeding
30:1 in a single session (and overall exceeding 300:1). We
tabulate the maximum and minimum flux densities for each
session in Table 1, and show four example light curves in
Figure 1.

Significant circular polarization, also generally time variable,
was observed in many cases, and we list as a percentage the
average circular polarization, defined as (R − L)/(R + L), for
each observing session in Table 1. We defer discussion of the
circular polarization to Section 3.4 below.

3.2. VLBI Images

In Figure 2, we present the 8.4 GHz VLBI images of
IM Peg for all 35 observing sessions, while Table 2 lists some
characteristics of the images including their peak and rms
background brightness values. As shown in Table 1, IM Peg’s
total flux density, as monitored by VLA observations, varied
significantly during a number of our VLBI observing sessions.
In such cases, the VLBI image made from the whole data set
(such as those in Figure 2) represents the average emission over
the observing session, albeit with some possible distortion due
to the incomplete removal of sidelobes.7 The rms background
brightness values, given in Table 2, are estimated from empty
regions in each image. They represent a lower bound on the
image brightness uncertainty. Adding to this bound are the
effects of the aforementioned distortion due to time variability
and deconvolution errors, which limit the image fidelity (see,
e.g., Briggs et al. 1999 and Briggs 1995; see also discussion
in Bietenholz et al. 2003). The images were made by first
weighting the visibilities with the inverse square root of the

7 Images made from earth-rotation aperture synthesis observations, such as
our VLBI images, are generally based on the assumption that the source
brightness distribution does not change during the observations. Since both the
brightness distribution and the instantaneous point-spread function are time
variable, and since deconvolution is a nonlinear process, the deconvolved
image does not strictly represent the time-averaged brightness distribution.
However, provided that the change in the brightness distribution is not gross
and that the sidelobes are relatively low compared to the peak of the
point-spread function, a deconvolved image should be a reasonable
approximation to the time-averaged brightness distribution.

nominal statistical variance in the visibility measurements8 and
then further modifying the weighting by the robust weighting
scheme of Briggs (1995) as implemented in AIPS.

We display the VLBI images in Figure 2, centered on the
chromospherically active primary based on our astrometry,
which includes fits to the ∼25 day orbit and the parallax, as
well as the secular proper motion of the star (see Papers IV, V,
and VI). This identification of the star’s center in each image
is based not only on our astrometry, but also on the assumption
that the radio emission is, on average, centered on the star. It
is possible, although we consider it less likely, that there is
a significant systematic offset of the radio emission from the
center of the star. The rms scatter in position over all observing
sessions, based on the residuals, is ∼0.4 mas in both α and δ.
This scatter is dominated by the variability in the position of the
radio source with respect to the star’s center, as our astrometric
uncertainty is <0.14 mas. We expect our fit position for the star’s
center, which we use as the origin in each panel of Figure 2, to
be in error by no more than 0.3 mas (1σ ), with the likely errors
being smaller (see Paper V).

3.3. Rapid Time Evolution of the Images from VLBI

The u–v coverage of our array is dense enough to allow
us to produce images from subsets of our data for each
observing session, each covering several consecutive hours. As
two examples, we show in Figure 3 images made by partitioning
the data from the observing sessions of 1997 December 27 and
1999 September 19, respectively, into three time ranges. The
time ranges were chosen so as to have an approximately equal
number of visibility measurements in each interval.

Unfortunately, as the u–v coverage changes, so does the
elliptical convolving beam. Convolving with a common, round
beam would have allowed easier comparison of the three time
ranges, but at the expense of losing much of the image structure
to the resulting lower resolution.

Both these observing sessions show similar temporal behav-
ior. In the first two of the three time ranges, the source exhibits a
double structure very similar to that of the average image shown
in Figure 2, with two distinct brightness maxima. In both ses-
sions, in the last of the three time ranges, the effective resolution
is lower, and it is no longer possible to distinguish the two max-
ima, although the presence of a double structure similar to that
seen in the first two time ranges is compatible with the image.

In both examples, the double structure seems to persist over
most or all of our ∼12 hr observing sessions. We can conclude
that the double structure is not an artifact of motion over
short timescales. Such rapid motion was in fact seen on 1997
January 16 (Lebach et al. 1999). Smaller motions on hour
timescales occurred in our 1998 March 1 and 1998 August 8
sessions, both of which show strong flux-density variability (see
Ransom et al. 2005). These rapid motions are much faster than
the orbital motion or that due to rotation of the primary star,

8 The nominal statistical variance of the visibility measurements reflects the
uncertainties due only to random measurement noise. If such random noise
were the only source of error in the visibility measurements, then the most
efficient weighting would be weighting by the inverse of the nominal variance.
However, in our case, especially for the more sensitive telescopes, the effective
uncertainty in a particular visibility measurement can be dominated by small
residual calibration errors rather than statistical noise. These calibration errors
will depend only weakly on the telescope sensitivity. For this reason, we
weighted by the inverse square root of the variance. This compresses the
weights, and although ad hoc, should lead to a more robust image at the
possible expense of a slight loss of signal-to-noise ratio.
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Figure 1. Total 8.4 GHz flux density (top curves) and fractional circular polarization, mc (IEEE convention; lower curves), of IM Peg as functions of time, as determined
from VLA observations, shown for four example observing sessions, namely, 1997 December 27, 1998 March 1, 1999 September 19, and 2000 November 6. Note
that the dates given in horizontal axis labels in this figure are start dates, so that the lower right panel refers to the observing session with the midpoint date of 2000
November 6 in Table 1. The plotted 1σ uncertainties are statistical only and do not include an estimated 5% systematic uncertainty in the VLA flux-density calibration.
(Within each session, any calibration error in the flux density is not expected to vary rapidly as a function of time.)

which are expected to be only ∼0.03 mas over 3 hr, and thus
not easily detectable in a VLBI session.

3.4. Polarization

For the 2004 March 6 epoch, for which we performed a
full polarization calibration, we measured a linear polarization
fraction for IM Peg of <1%. This is consistent with the
expectation that Faraday rotation within the corona of an

RS CVn system will substantially depolarize any centimeter-
wavelength radio emission (Paredes 2005). We do not discuss
linear polarization further.

RS CVn systems are, on the other hand, expected to show
substantial circular polarization due to the gyrosynchrotron
mechanism. We did therefore determine the average circular
polarization for each observing session from our VLA data (see
Table 1). We plot the measured values of the fractional circular
polarization, mc, in the left panel of Figure 4. The maximum
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Figure 2. VLBI images of IM Peg at 8.4 GHz. The observing date is indicated in the top left of each panel, while the FWHM of the convolving beam is indicated
in the lower left. North is up and east is to the left. Both the contours and the color scale show the brightness. The contours are drawn at 10%, 20%, 30%, . . . ,
80%, 90%, and 98% of the peak brightness, starting with the first contour above three times the rms background; and contours at 50% and above are drawn in black.
The peak brightness and rms background values are listed in Table 2. The center of each panel (red dot) is the fit position of the star’s center, as derived from the
astrometric results of Paper V. In other words, the coordinate origin in our radio image should approximately represent the center of the disk of the primary star. The
red circle indicates the angular size of the primary star (radius of 13.3±0.6 R�; Berdyugina et al. 1999b). The cyan dotted ellipse shows the binary orbit of the primary
(Paper V). Note that we have chosen to keep the primary star, rather than the center of the binary orbit at the center of our plots. We also include an mpeg animation
showing the evolution of IM Peg’s radio emission. This animation consists of a simple linear interpolation in brightness between consecutive observing sessions. It
is intended to be illustrative only, as our sampling is not rapid enough to follow the evolution of the radio emission in detail. In the animation that accompanies this
figure, color is used to indicate the total flux density at each epoch, with blue indicating low flux densities and redder colors indicating higher total flux densities. Time
is linear, with each frame in the animation corresponding to approximately four days.

(An animation of this figure is available in the online journal.)
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Figure 2. (Continued)
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Figure 2. (Continued)

observed value of |mc| was ∼46% (on 2005 July 16). Values of
|mc| > 10% were only seen when the flux density was below
2 mJy. Higher values of |mc| are observed after 2004, when the
total flux density was generally lower, suggesting that |mc| is
anticorrelated with the total flux density.

Over the 32 observing sessions for which we had VLA data,
the weighted average of mc was 1.3% ± 0.4%, with the standard
deviation being 13%, and the cited uncertainty being statistical
only. This result suggests a marginally significant (3.1σ ) average
positive circular polarization. However, an additional systematic
error, which we estimate at 1%, must be added because of the
possible deviations from the assumed value of zero for mc of our
calibrator sources as well as the uncorrected leakage terms. The
average value of mc therefore cannot be regarded as significantly
different from 0.

We also found no obvious correlation of mc with orbital phase.
We plot the fractional circular polarization against orbital phase
in the right panel of Figure 4; no obvious correlation with orbital
phase is observed. Note that here and throughout this paper, we
calculate the orbital phase at the midpoint of each observing
session, in fractions of an orbit period, as determined from the
orbit of Marsden et al. (2005).

Although, as noted, the average value of mc was not signifi-
cantly different from 0, we did find evidence for a significantly
positive value of mc when the flux density was low. We exam-
ine only those epochs which had a flux density of <2 mJy and
found that the weighted average mc was 4.3% ± 0.9%. Of these
epochs, 10 out of 12 have positive mc. The chance probability
of observing this many or more positive values of mc if the sign
were random is 1.9%. We conclude that for low flux densities,
there is a high probability that IM Peg is right (IEEE convention)
circularly polarized.

Significant circular polarization is commonly detected in RS
CVn stars. IM Peg seems to follow the trends observed for other
systems, in that mc has a somewhat consistent sign, but the
magnitude decreases with increasing flux density. It has been
proposed (e.g., Lestrade et al. 1988; Mutel et al. 1985) that

this pattern is due to flares radiating via the gyrosynchrotron
mechanism. Each flare represents some release of energy.
Shortly after the initial release, the emission is optically thick,
hence of high brightness but of low circular polarization. As
the flare decays, the brightness as well as the optical thickness
decreases, and the fractional circular polarization increases.
The low-level “quiescent” emission might then just be the
superposition of the decays of many small flare events. Note that
an alternative explanation for the quiescent emission which has
been proposed is that it represents gyrosynchrotron emission
from a thermal (Maxwellian) population of electrons (e.g.,
Drake et al. 1989). Arguments against this hypothesis are given
in Beasley & Güdel (2000) and Paredes (2005). Our observation
of high circular polarization when IM Peg’s flux density was
low, as well as our observation of large source sizes, also when
IM Peg was quite weak (e.g., during the observing session
of 2005 May 15) argues further against this hypothesis. We
therefore think that the quiescent radio emission is due to a
non-thermal, rather than a thermal, population of electrons.

For our VLBI observing sessions, we recorded both right
and left circular polarizations, and can therefore image the
circularly polarized flux density. Figure 5 shows three example
images. The distribution of circular polarization clearly varies
from session to session. Some sessions, such as that of 1998
September 17, show a fractional circular polarization that is
approximately constant across the emission region; for other
sessions, for example 2004 March 6, there are prominent
gradients.

3.5. Parameterization of the Emission Geometry

To investigate the temporal evolution of the emission geome-
try, we sought to parameterize it. As a simple first approach fitted
an elliptical Gaussian to the image. Although such a fit does not
adequately describe the complexity of the emission region, es-
pecially when the emission region shows a double structure,
the fitted major axis and its P.A. nonetheless give an indica-
tion of the overall extension and the direction of elongation

7
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Table 2
Image Characteristics

Date MJD Peak Brightness Image RMSa Major Axisb,e Axis Ratioc,e P.A.d,e

(midpoint) (midpoint) (mJy bm−1) (mJy bm−1) (mas) (◦)

1997 Jan 16 50464.90 7.97 0.15 2.78 0.22 136
1997 Jan 18 50466.89 4.67 0.07 1.93 0.40 149
1997 Nov 30 50782.03 6.85 0.06 1.00 0.57 140
1997 Dec 21 50803.96 31.9 0.15 0.77 0.79 13
1997 Dec 27 50809.96 4.61 0.06 2.18 0.27 146
1998 Mar 1 50873.78 5.52 0.22 1.49 0.00 124
1998 Jul 12 51006.41 0.72 0.04 1.62 0.50 134
1998 Aug 8 51033.35 4.03 0.06 0.89 0.46 130
1998 Sep 17 51073.24 12.6 0.13 0.99 0.46 127
1999 Mar 13 51250.74 0.92 0.04 1.64 0.35 153
1999 May 15 51313.57 2.09 0.04 0.98 0.48 105
1999 Sep 19 51440.23 13.1 0.10 1.38 0.75 170
1999 Dec 9 51521.99 1.05 0.04 0.29 0.52 93
2000 May 15 51679.56 0.39 0.04 1.43 0.15 149
2000 Aug 7 51763.34 32.7 0.43 0.53 0.62 109
2000 Nov 6 51854.09 1.87 0.05 1.01 0.00 125
2000 Nov 7 51855.01 6.82 0.12 0.89 0.30 97
2001 Mar 31 51999.73 0.23 0.05 2.53 0.00 10
2001 Jun 29 52089.48 0.44 0.03 1.09 0.48 16
2001 Oct 20 52202.05 5.17 0.07 0.95 0.57 134
2001 Dec 21 52264.99 0.78 0.05 1.12 0.93 92
2002 Apr 14 52378.65 0.36 0.03 0.69 0.00 3
2002 Jul 14 52469.40 0.24 0.04 2.74 0.29 1
2002 Nov 21 52599.06 0.29 0.05 0.74 0.00 162
2003 Jan 26 52665.88 0.21 0.05 0.68 0.00 21
2003 May 18 52777.55 0.52 0.04 0.84 0.85 160
2003 Sep 9 52891.24 0.24 0.05 1.46 0.00 69
2003 Dec 6 52979.00 0.27 0.05 2.41 0.51 136
2004 Mar 6 53070.76 9.52 0.09 0.71 0.54 179
2004 May 18 53143.58 5.28 0.06 1.02 0.75 28
2004 Jun 26 53182.49 4.77 0.06 1.13 0.42 4
2004 Dec 12 53351.00 0.53 0.04 1.20 0.65 177
2005 Jan 15 53385.92 0.14 0.02 3.3 0.22 175
2005 May 28 53518.45 0.29 0.03 1.36 0.28 152
2005 Jul 16 53567.41 0.13 0.03 1.50 0.00 20

Notes.
a The rms background as estimated from empty regions in each image; this rms represents a lower limit to the image uncertainty
(see the text).
b The FWHM major axis, b, of an elliptical Gaussian fitted to the image.
c The axis ratio of an elliptical Gaussian fitted to the image.
d The P.A. of the major axis, θb , of an elliptical Gaussian fitted to the image, constrained to be <180◦.
e The values are those for an elliptical Gaussian which is the deconvolution of the (elliptical Gaussian) restoring beam from the
elliptical Gaussian fitted to the CLEAN image by least squares.

of the emission region. We denote the vector major axis of the
fitted Gaussian by b and its p.a. by θb. Note that to avoid the
bias introduced by convolution with the CLEAN beam, we do
not use directly the values from the elliptical Gaussian fitted
to the image, but rather those from the “deconvolved” elliptical
Gaussian. The deconvolved elliptical Gaussian is the one which,
when convolved with the elliptical Gaussian clean beam, results
in the fitted elliptical Gaussian. The “deconvolved” fitted values
of |b|, θb, and the axis ratio are given in Table 2 for each session.
We also plot b on the projection of the binary orbit in Figure 6.

Figure 6 shows that the values of θb are not randomly
distributed, but rather show a preferred orientation. The average9

of b was 0.71 mas along θb = 157◦. A bootstrap calculation gives

9 Note that the quantities b are axial, rather than true, vectors in that θb = 90◦
is equivalent to θb = −90◦. In order to meaningfully average b, we follow
Batschelet (1981) and first double the P.A.’s (θb), then perform the usual vector
average, and then halve the P.A. of the result to obtain the final average value
of b.

a statistical uncertainty of 7◦ for the average direction of b;
however, systematic uncertainties, for example stemming from
the “deconvolution” of the clean beam, are likely to be several
times larger. The probability10 of n = 35 random values being
so well aligned is �1%. We note that the above calculation used
a P.A. derived from a single elliptical Gaussian fit to the entire
emission region.

4. DISCUSSION

Using VLBI, we have produced a series of high-quality
images of the radio emission from the RS CVn star, IM Peg.
Our east–west resolution is approximately equal to the stellar
radius of the primary; our north–south resolution is ∼3 times
poorer. The images show that the radio emission exhibits a

10 The chance probability was estimated from a 5000-trial Monte Carlo
simulation, with each trial using 35 vectors with the same lengths as the
measured values of b, but with random orientations between 0◦ and 180◦.
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Figure 3. Time-resolved images of IM Peg on 1997 December 27 (top row) and 1999 September 19 (bottom row). In each row, the three panels show the VLBI images
in the three consecutive UT time ranges given. The convolving beam, which varies with time, is indicated at lower left in each panel. Contours and gray scale are
similar to those in Figure 2. The three time ranges were chosen so that each has an approximately equal number of visibility measurements. The corresponding light
curves were given in Figure 1.

Figure 4. Left panel: fractional circular polarization, mc (IEEE convention), as determined from our VLA observations, plotted against year. Right panel: mc plotted
against orbital phase (using the orbit of Marsden et al. 2005). Points with orbital phases between 0 and 0.5 are repeated on the right of the plot (with phases between
1.0 and 1.5) to make any possible cyclical variation more clearly visible.
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Figure 5. Three example images showing the circularly polarized flux density on the dates indicated. The color scale shows the circularly polarized flux density
(Stokes V; IEEE convention) and is labeled in mJy bm−1. The contours show the total intensity (Stokes I), and are drawn at −10%, 10%, 20%, . . . , 90%, 98% of the
peak brightness, which is 0.032, 0.013, and 0.010 mJy bm−1, respectively, for the three images. As in Figure 2, the origin in each panel is the center of the primary
star as determined from the astrometric results in Paper V. North is up and east is to the left.

variety of morphologies, ranging from being largely unresolved
to having a clear double and on one occasion (2003 December 6)
a possibly triple structure. Although no other RS CVn system
has been so extensively observed with VLBI, the images of other
systems are generally within the range of the morphologies we
observed for IM Peg. The radio emission is highly variable
and during most of our VLBI observing sessions the total
flux density varied significantly. On occasion, time-resolved
images show variations in morphology over several hours. As we
have mentioned, apparent motion of IM Peg’s emission region,
correlated with evolution of its flux density on timescales of 1 hr,
is definitely seen in our 1997 January 16 session (Lebach et al.
1999), and may be present in at least two of our other observing
sessions.

What can be said about the nature of the variability of
IM Peg’s radio emission? Since IM Peg is a known binary and
its orbit is well known from optical spectroscopy (Marsden
et al. 2005; Berdyugina et al. 1999b) and from our VLBI
astrometry (Papers IV and V), we next investigate whether the
radio emission varies significantly with the orbital phase of the
binary or in a secular fashion.

4.1. Does the Radio Brightness Vary with Orbital Phase?

In Figure 7, we plot flux density against time and also against
orbital phase. There is a secular decline in the flux density,
with lower flux densities being observed after late 1999. No
correlation with orbital phase is apparent. In particular, we find
that the times when the flux density is high, presumably because
of outbursts, do not occur during any particular part of the orbit.
This result is similar to that found for Algol (Mutel et al. 1998),
but unlike that found for the RS CVn binary HR 1099, where
radio outbursts seem to occur predominantly between the orbital
phases of 0.50–0.67 (Slee et al. 2008).

4.2. Orientation and Elongation of the Radio Emission Region

As we showed in the previous section, no correlation between
the total flux density and the orbital phase is apparent. Since the
orbits are nearly circular (Marsden et al. 2005; Berdyugina et al.
1999b; Olah et al. 1998), one might not expect such a correlation

Figure 6. Elongation of the radio emission region of IM Peg as a function of
position in the orbit. The dots indicate the projected position in the orbit of
the primary star for each of our 35 observing sessions, and the corresponding
lines represent the FWHM major axis of an elliptical Gaussian fit to the radio
emission of that session. The origin of the coordinate system is the center of the
orbit.

if neither eclipsing nor beaming effects are significant. However,
the emission region is often extended by as much as the
separation between the two stars (∼2 mas), which leads to
the question: is there any correlation between the geometry
of the emission region and the orbital phase? For example, a
correlation of the amount and/or angle of elongation of the
radio emission with orbital phase might be expected if the radio
emission originates predominantly along the line between the
two stars (as is seen in the Algol system; Peterson et al. 2010;
although we note that, unlike IM Peg, Algol is an interacting
system for which emission predominately from within the region

10
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Figure 7. Left panel: the logarithm of the 8.4 GHz total flux density of IM Peg in milli-Janskies, plotted against time. The total flux density often varied within an
observing session, and the range of this variation is shown by the vertical lines that connect dots placed at the extreme values of the flux densities during the observing
session. In each case where the total flux density did not vary discernibly within the observing interval or where the flux density was determined from VLBI rather
than VLA observations, the observational uncertainty (1σ ) is shown by a dotted error bar centered on the dot; the fractional observational uncertainties for the other
sessions are similar. Right panel: the same flux densities, but plotted against orbital phase (using the orbital parameters of Marsden et al. 2005). Points with orbital
phases between 0 and 0.5 are repeated on the right of the plot (with phases between 1.0 ad 1.5) to make any possible cyclical variation more clearly visible.

between the two stars is physically more plausible). To explore
this question, we make use of our Gaussian fits to the emission
geometry from Section 3.5 and Table 2, in particular, making
use of the p.a., θb, of the Gaussian fit to the images.

Geometrical and astrophysical considerations suggest that the
most likely direction is either along the line from the primary to
the secondary or parallel to the orbit normal or perhaps the star’s
rotation axis if it were different from the orbit normal. In the first
case, one would expect that θb would vary with the orbital phase,
while in the second, one would expect θb to remain constant. In
Figure 8, we plot θb against time and against orbital phase.
Neither hypothesis is well supported. Until approximately
1999.5, θb is fairly well determined, with the data possibly
suggesting a secular variation with θb decreasing from ∼140◦
in 1995.0 to ∼100◦ by 1999.5. Thereafter, θb is more poorly
determined, largely because the total flux densities and hence
signal-to-noise ratios were lower due to the aforementioned
secular decrease in the average flux density.

In Figure 6, the direction of elongation of the radio emission
region does not show a correlation with the line joining the
primary to the secondary, implying that the radio emission
region does not stretch between the two stars. Since we think it
unlikely that the radio emission is associated with the secondary,
we do not consider that possibility further. Since we find no
evidence that the radio emission is spatially associated with
the line joining the two stars, we therefore conclude that the
radio emission is associated only with the primary. Indeed,
this conclusion is consistent with our astrometry (Paper V and
Paper VI), which suggests that the radio emission is associated
with the primary. We discuss the possibility that the radio
emission is associated with starspots on the primary below in
Section 4.5.

As noted in Section 3.5, there is a significant tendency
for the emission region to be preferentially extended along

P.A. = 157◦, which direction is reasonably close to that of the
sky-projected orbital angular momentum, which is at P.A.
130◦ ±13◦ (Paper V).11 The radio emission, therefore, seems to
extend preferentially in the projected direction close to that of
the orbital angular momentum. This alignment suggests that the
emission tends to be associated with the magnetic poles of the
star, provided the magnetic poles are near the rotational ones.
This location is consistent with the polar-cap model proposed
for the Algol system by Mutel et al. (1998).

The average extent of the emission region (as given by the
fitted Gaussian FWHM major-axis length, b) was 1.4 ± 0.4 mas,
corresponding at 96 pc to (1.9 ± 0.6) × 1012 cm, or 1.1 ±
0.3 times the star’s diameter (for which we again use the value
of ∼27 R� from Berdyugina et al. 1999b). This result suggests
that the bulk of the radio emission generally occurs within an
area not much larger in size than the stellar disk.

4.3. Rapid Evolution of the Radio Structure

By dividing an observing session temporally, we can assess
any possible rapid evolution of the image geometry. A rapid
change in the apparent position accompanied by a large change
in flux density is seen in several sessions. The most dramatic
example was the already mentioned change in apparent position
of ∼0.9 mas over a period of 1.4 hr on 1997 January 16 (see
Lebach et al. 1999). Such a change in apparent position could be
due either to (1) fast motion at ∼1000 km s−1 of flare-energized

11 As we mention in Section 3.5 above, the systematic uncertainty on the
average angle of elongation of the radio emission likely dominates the
statistical one of ±7◦. We can therefore not make a more definitive statement
as to whether the average direction of elongation of the radio emission lies
along the orbit normal within the uncertainties or not. We note that any bias in
our estimate of the elongation of the emission region toward the average
elongation of the restoring beam at P.A. = 174◦ would bring it closer to the
angle of the orbit normal of 130◦ ± 13◦.
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Figure 8. Left panel: the P.A. of elongation of the radio emission region, θb , determined from the VLBI images of IM Peg, plotted against time. We chose to plot a
range of ±90◦ in P.A. around that of the orbital angular momentum as projected on the sky (Paper VI), which is indicated by a dotted horizontal line (note that θb is
axial: it can take on different possible values only over a range of 180◦). Right panel: the same P.A.’s, but plotted against orbital phase (using the orbit of Marsden
et al. 2005). Points with orbital phases between 0 and 0.5 are repeated on the right of the plot (with phases between 1.0 and 1.5) to make any possible cyclical variation
more clearly visible.

electrons in a single magnetic-loop structure or (2) two spatially
distinct components separated by ∼1 mas, with a rapid change
in their relative brightness. Given the elongation of the emission
region for the 1997 Jan observing session (see Figure 2), the
latter is more plausible. However, for the 1998 March and 1998
August sessions, in which the emission region is quite compact,
motion of the energized electrons is a likely possibility.

We see double (and in one case, an apparent triple) structure
in ∼25% of our images. Images made from temporal subsets
of some of our observing sessions, for example those shown in
Figure 3, show that the double structure usually persists over
periods >6 hr. We found in Section 4.2 above that, on average,
the extent of the radio emission on the sky was comparable to
the size of the stellar disk. On occasion, though, the extent of the
radio emission (as given by the FWHM of an elliptical Gaussian
fitted to the image) is up to about twice the stellar diameter.12 It
seems plausible therefore that most of the radio emission occurs
not far from the stellar surface, but on occasion, relatively bright
radio emission is generated at distances of up a stellar diameter
above the surface.

It is likely that the radio emission originates in active regions,
e.g., magnetic-loop structures, approximately a stellar radius
in size (see, e.g., Peterson et al. 2010; Mullan et al. 2006;
Franciosini et al. 1999; Lestrade et al. 1988), which are rooted
on the surface of the star. Indeed, IM Peg is of the spectral type
K2, and Mullan et al. (2006) show that the largest coronal loops,
with sizes up to two stellar radii, occur in stars of type K2 or later.
Although the radio brightness of each emission region is often
variable on timescales of ∼1 hr or less, the regions themselves
appear longer lived, since the radio emission does not generally

12 We note that the largest value for an FWHM major axis of the radio
emission was observed on 2005 January 15 and was 3.3 mas, corresponding to
2.5 stellar diameters. That particular value, however, is rather uncertain as
IM Peg was very weak for that session. Of the better-determined major-axis
values, the largest one corresponds to ∼2.2 times the diameter of the stellar
disk.

seem to move on scales of the stellar radius over periods of
a few hours. The rotation and orbital motion of the primary
will produce proper motions of ∼10 μas hr−1, which is below
what can be reliably determined from our images. The lack of
motions on the short timescales of the flux-density variations
suggests that more rapid bulk or pattern motion, for example
due to plasma moving along the magnetic-loop structures, are
not prevalent or at least generally occur on scales smaller than
the stellar radius.

4.4. Fourier Analysis of Quantities Derived from Images

The near-equality between the photometric period of IM Peg
(variable between 23.8 and 25.2 days; see Strassmeier et al.
1997) with the spectroscopic one of 24.64877 days suggests
that the rotation of IM Peg primary is tidally locked to its orbital
motion (note that, given the variable nature of the dark spots
on the surface of the star, an exact equivalence between the
photometric and spectroscopic periods is not expected). Both
the lack of any clear correlations between either the location of
the emission relative to the center of the star, or the direction
of elongation of the emission region with the orbital phase, and
the observations of apparent motion on hour timescales therefore
suggest that the brightest emission does not always emanate
from a region centered on a single spot on the rotating surface
of the star.

Optical Doppler imaging of IM Peg’s surface has shown that
there are dark spots, which cover �15% of the star’s surface
(Berdyugina & Marsden 2006; Berdyugina et al. 2000). These
dark spots are presumably the cause of the photometric vari-
ability. The photometric period, however, does not correspond
precisely to the orbital one. The photometric period is variable,
ranging between ∼24 and ∼25 days between 1993 and 1999
(Strassmeier et al. 1997; Berdyugina et al. 2000). In fact, multi-
band photometry can be used to constrain the spot population
independent of Doppler imaging and gives generally consistent
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Figure 9. Upper panel: normalized Lomb–Scargle periodogram of the
log of the total flux density of IM Peg derived from our 35 observing sessions
of observations. The dotted lines indicate the spectroscopic binary frequency of
(1/24.64877) day−1 and its first three harmonics. Lower panel: a normalized
Lomb–Scargle periodogram of the maximum angular extent of the radio emis-
sion, as parameterized by the FWHM major axis of an elliptical Gaussian fitted
to the radio images.

results (Zellem et al. 2010). Over the period 1996–1999, the
dark spots responsible for the photometric variation occur pref-
erentially at two active longitudes13 on opposite hemispheres (in
longitude), but seem to drift in longitude by about 0.◦05 day−1,
resulting in a photometric period which can vary slightly from
the spectroscopic one.

Do our measurements show evidence of periodicities other
than the orbital one? To identify any possible periodicities
in the radio data, we produced normalized Lomb–Scargle
periodograms (Scargle 1982) of several quantities derived from
the radio observations, namely, the total flux density, the
fractional variation of the flux density within the observing
session, the cosine and sine of the P.A. of elongation, the
major axis length of an elliptical Gaussian fit to the radio
images, and the average (over an observing session) degree
of circular polarization. In none of these periodograms did we
find any significant periodicity. All the peaks seen have chance
probabilities of 30% or higher (probabilities are calculated
according to Scargle 1982). As an example, we show in Figure 9
the periodograms for the total flux density and the maximum
angular extent of the radio emission as parameterized by the
FWHM major axis of an elliptical Gaussian fit to each radio
image. No peaks higher than would be expected by chance are
observed, and the highest peaks observed in either periodogram
are not near the orbital frequency or its first three harmonics.
No significant peaks at longer periods, such as the 294 day
(frequency = ∼0.0035 day−1) Rieger-like flaring periodicity
found in the RS CVn system UX ARI (Massi 2007; Massi
et al. 2005), are observed. We note, however, that there are local
maxima near some of the harmonics of the orbital frequency,
indicating that there may well be some periodic behavior, but

13 The stellar longitude is defined by assuming tidally-locked rotation, with
longitude zero being for the meridian facing the secondary.

not at a level reliably distinguishable with our data from mere
random variation. In particular, there is moderately high peak
near the second harmonic in the periodogram for the major-
axis length, at a frequency of 0.0808 day−1 or 1.99× the
orbital one of 0.040570 day−1. This peak is the fourth highest
in the periodogram. If the location of the periodogram peaks
were random, the chance that one of the four highest peaks
would fall within 1% of the first four harmonics of the orbital
frequency would be ∼3%. If the periodicity is associated with
the projection onto the sky of some dimension which rotates
with the stars in their orbit, then geometrical considerations in
fact suggest a frequency double the orbital one, as is observed.
We also note that the photometric period seems to be slightly
different than the orbital one. Berdyugina et al. (2000) found a
spot rotation frequency of 0.997 times the orbital one during the
period 1996–1999; its second harmonic would be very close to
the periodogram peak in question.

In conclusion, no statistically significant periodicities are
visible in the characteristics of the radio emission: its total flux
density, its short timescale variability, or its spatial extent. No
significant periodicities are present in the astrometric residuals
either (see Paper V). We note, however, that there is evidence,
albeit inconclusive, for some geometrical effect on the extent
of the radio emission region associated with either the rotation
of the binary or more likely the rotation of the starspots on the
primary star.

4.5. Comparison of Radio Images with
Optical Doppler Imaging

Optical spectra from short exposures of �20 minutes allow
the imaging of portions of the star’s photosphere using Doppler
imaging (e.g., Berdyugina & Marsden 2006; Berdyugina et al.
2000, 1999b). As mentioned earlier, such imaging shows that
the dark spots occur primarily at one or more long-lived active
longitudes on the surface of the star. Ribárik et al. (2003)
came to a similar conclusion by analyzing the photometric data.
The optical observations showed that the most intense spots
usually occur on the side toward the secondary, i.e., at a stellar
longitude near 0, although, as noted above, the active longitudes
were found to change slowly with time (Marsden et al. 2007;
Berdyugina & Marsden 2006; Ribárik et al. 2003; Berdyugina
et al. 2000), likely as a result of differential rotation of the
stellar surface, as we see in the Sun, and as has been observed in
a different RS CVn star, II Pegasi (Roettenbacher et al. 2011).
The dark spots also seem more likely to occur at stellar latitudes
nearer the pole than the equator (Berdyugina & Marsden 2006;
Berdyugina et al. 2000).

As our astrometric fit gives a good estimate of the expected
position of the center of the star for each observing session, can
we calculate the location of the brightness peak of the radio
emission as projected onto the star’s surface for comparison
with the location of the optical dark spots? Given that the height
of the radio-emission peak above the stellar surface is unknown,
the stellar longitude and latitude cannot be directly obtained.
However, as we showed in Paper VI, the scatter in the positions
of the peak brightness points relative to the estimated center
position of the star was consistent with a distribution having a
scale height of only ∼0.2 stellar radii above the surface of the
star. We also concluded there that “spillover” emission, that is
where the emission originates on the side of the star away from
us, but enough of it spreads over the limb to be detected, was
responsible for only a relatively small fraction of the observed
radio brightness peaks.
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Figure 10. Latitude and longitude on the surface of the star corresponding to the peak brightness point of the radio emission. We calculate the latitude and longitude by
assuming the star’s center to be at the position given by our astrometric fit, and by taking the star’s angular radius to be 0.64 mas (see Section 4.5 for the assumptions
used in calculating the stellar latitude and longitude). Since the longitude becomes degenerate near the pole of the star, we omit in the right panel the four points which
were <0.1 mas from the pole on the sky.

We therefore make the simplifying approximations that the
emission peak is located exactly on the stellar surface and
is confined to the half of the surface facing us. With these
approximations, we can then calculate stellar latitude and
longitude of the emission peak for each observing session
except for those where the brightness peak falls outside the
stellar disk. For those sessions, we calculate the latitude and
longitude for the nearest point on the limb of the star. We again
use the value of 13.3 R� (Berdyugina et al. 1999b), which
corresponds to 0.64 mas, for the radius of the star. Although the
calculation of stellar latitude and longitude of the brightness
peak is approximate and could be seriously in error for a
few sessions because of the above simplifying assumptions,
in general our estimates should be adequate for our purpose
of determining whether the emission regions are preferentially
associated with some parts of the star’s surface. We plot our
values of the stellar latitude and longitude of the brightness
peak against time in Figure 10.

The radio emission shows no strong preference for any
particular stellar longitudes. In particular, we find no significant
preponderance of radio emission near zero longitudes (see
Figure 10). Eliminating indeterminate longitudes associated
with high latitudes, we are left with 31 values for the longitude
of the brightness peak. Of these, 17, or 55% ± 12%, have
longitudes in the range −90◦ to 90◦ (where longitude zero faces
the secondary), which is consistent with the spot longitude being
random.

As we already found in Paper VI, the radio brightness peak
may show a preference for stellar latitudes nearer the poles. For
example, 8 ± 3 points have a latitude either �±60◦ or �±−60◦,
whereas only 5 would be expected by chance.

The optical dark spots also show a preference for latitudes
near the poles (Marsden et al. 2007; Berdyugina & Marsden
2006), suggesting that there may be a connection between the
regions of bright radio emission and the optical dark spots.
Although the localization on the star’s surface of the radio bright

regions and the optical dark spots is not of sufficient accuracy
to warrant definitive conclusions, the evidence suggests that the
radio-bright regions do not directly correspond to the optical
dark spots, since the radio-bright regions do not seem to show
the same preferred longitudes as do the dark spots. Nonetheless,
the dark spots may represent the locations from which at least
some short-lived radio-bright flares emanate, as on the Sun.

4.6. The Nature of the Radio Emission

Our radio data suggest that the radio emission is highly
variable temporally and spatially, and is at least on occasion,
localized in regions covering only a fraction of the stellar
surface. This picture is supported by the observation of time
variability on scales much shorter than the orbital period, and
of rapid (�1 hr) positional variability accompanied by rapid
changes in flux density. In other words the radio emission seems
likely related to some rapid energy release localized on the stellar
surface.

Indeed, the total radio emission is likely due to several
distinct but temporally overlapping energy releases, or flares,
consistent with the model proposed for RS CVn radio emission
by Franciosini & Chiuderi-Drago (1994) and Mutel et al. (1985).
The flares have timescales of only a few hours, with individual
flares originating at different locations on, or above, the surface
of the star. On occasion, more than one such spot is present
and we observe double, or possibly triple, structure. The radio
emission is extended preferentially in a polar direction, perhaps
because of magnetic field lines extending also in that direction.
On average the angular extent of the emission region is similar to
that of the stellar disk, although it can be larger. This observation
suggests that the radio emission mostly occurs near the stellar
surface, but on occasion also occurs significantly above it.

Although the short timescales and the prevalence of multiple
structure suggest that the radio emission seems concentrated in
small regions of the star’s surface, we have no evidence that
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the radio flare spots are associated with the optical dark spots
on the stellar surface. It may, however, arise from extended
magnetic-loop structures whose feet are fixed to these active
surface regions. The occasional release of magnetic energy
stored at or below the surface in the long-lived spot regions
could energize electrons trapped in the loops, which then radiate
via the gyrosynchrotron mechanism.

The average flux density of IM Peg decreased during our
8.5 year observing period. During the first few years of our
observing program, the above-mentioned flares were more
frequent, occurring sometimes within just a few hours of one
another (see Figure 1). Toward the later part of our program,
flares were much less frequent, separated perhaps by several
days. If there is a steady-state population of radio-emitting
electrons, our observations set a limit on this quiescent emission
at a level �0.3 mJy.

5. SUMMARY

We discuss the unprecedented series of 35 VLBI radio images
of the RS CVn star IM Peg at 8.4 GHz, taken over a period of
8.5 years. These astrometric and imaging VLBI observations
were undertaken because IM Peg was chosen as the guide star for
GP-B. As well as the imaging VLBI observations, we obtained
total flux-density measurements using the VLA. Our astrometric
solution for the star’s proper motion, orbit, and parallax allows
us to align the images in a star-centered frame. We find the
following.

1. The radio emission from the star is rapidly variable. During
most of our observing sessions, the total flux density varied
by a factor of at least two over the course of several hours.

2. Significant circular polarization was observed for about
half of our observing sessions. The fractional circular
polarization was also rapidly variable and had a tendency
to be higher when the total flux density was lower. For
epochs with high circular polarization and low flux density,
the circular polarization was predominately positive (IEEE
convention).

3. The morphology of the radio emission is also variable.
Mostly the emission region has a single-peaked structure,
but about 25% of the time, we observed two (and on one
occasion three) peaks. On average, the emission region is
elongated by ∼1.4 ± 0.4 mas (FWHM).

4. On average, the emission region is comparable in size to
the disk of the primary star. It is also, on average, somewhat
more extended in the direction of the sky-projected angular
momentum of the binary orbit. The radio emission is likely
associated with one or more regions on or above the surface
of the star.

5. We searched for, but did not find, any sign of periodic be-
havior, either at the known orbital period (24.64877 days) or
at any other periods. In particular, neither flux density, de-
gree of circular polarization, degree, or angle of elongation
of the emission region showed any significant periodicities.

6. The regions of brightest radio emission show no preference
for any particular stellar longitudes, unlike the dark spots
seen in the optical. Nonetheless, like the optical dark
spots, the regions of bright radio emission regions show
a preference for stellar latitudes near the poles. Despite a
likely relationship between the mechanisms, the regions of
brightest radio emission are short-lived, and do not seem
to be directly associated with the long-lived optical dark
spots.

7. The radio emission may arise due to short-lived flares,
with each flare occupying only a small part of the stellar
surface. These flares may be associated with a magnetic
field which has its strongest component along the direction
of the rotational axis.
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