98 research outputs found

    On the Wegener granulomatosis associated region on chromosome 6p21.3

    Get PDF
    BACKGROUND: Wegener granulomatosis (WG) belongs to the heterogeneous group of systemic vasculitides. The multifactorial pathophysiology of WG is supposedly caused by yet unknown environmental influence(s) on the basis of genetic predisposition. The presence of anti-neutrophil cytoplasmic antibodies (ANCA) in the plasma of patients and genetic involvement of the human leukocyte antigen system reflect an autoimmune background of the disease. Strong associations were revealed with WG by markers located in the major histocompatibility complex class II (MHC II) region in the vicinity of human leukocyte antigen (HLA)-DPB1 and the retinoid X receptor B (RXRB) loci. In order to define the involvement of the 6p21.3 region in WG in more detail this previous population-based association study was expanded here to the respective 3.6 megabase encompassing this region on chromosome 6. The RXRB gene was analysed as well as a splice-site variation of the butyrophilin-like (BTNL2) gene which is also located within the respective region. The latter polymorphism has been evaluated here as it appears as a HLA independent susceptibility factor in another granulomatous disorder, sarcoidosis. METHODS: 150–180 German WG patients and a corresponding cohort of healthy controls (n = 100–261) were used in a two-step study. A panel of 94 microsatellites was designed for the initial step using a DNA pooling approach. Markers with significantly differing allele frequencies between patient and control pools were individually genotyped. The RXRB gene was analysed for single strand conformation polymorphisms (SSCP) and restriction fragment length polymorphisms (RFLP). The splice-site polymorphism in the BTNL2 gene was also investigated by RFLP analysis. RESULTS: A previously investigated microsatellite (#1.0.3.7, Santa Cruz genome browser (UCSC) May 2004 Freeze localisation: chr6:31257596-34999883), which was used as a positive control, remained associated throughout the whole two-step approach. Yet, no additional evidence for association of other microsatellite markers was found in the entire investigated region. Analysis of the RXRB gene located in the WG associated region revealed associations of two variations (rs10548957 p(allelic )= 0.02 and rs6531 p(allelic )= 5.20 × 10(-5), OR = 1.88). Several alleles of markers located between HLA-DPB1, SNP rs6531 and microsatellite 1.0.3.7 showed linkage disequilibrium with r(2 )values exceeding 0.10. Significant differences were not demonstrable for the sarcoidosis associated splice-site variation (rs2076530 p(allelic )= 0.80) in our WG cohort. CONCLUSION: Since a microsatellite flanking the RXRB gene and two intragenic polymorphisms are associated significantly with WG on chromosome 6p21.3, further investigations should be focussed on extensive fine-mapping in this region by densely mapping with additional markers such as SNPs. This strategy may reveal even deeper insights into the genetic contributions of the respective region for the pathogenesis of WG

    Ocular disease in patients with ANCA-positive vasculitis

    Get PDF
    Anti-neutrophil cytoplasmic antibody (ANCA)-positive vasculitis—the term recently applied to Wegener's granulomatosis—is a rare multi-system inflammation characterized by necrotizing granulomas and vasculitis. We investigated the ocular manifestations of this disease in a group of patients drawn from five inflammatory eye disease clinics across the United States. Of 8,562 persons with ocular inflammation, 59 individuals were diagnosed with ANCA-positive vasculitis; 35 males and 21 females, aged 16 to 96 years, were included in this study. Ocular diagnoses were scleritis (75.0%), uveitis (17.9%), and other ocular inflammatory conditions (33.9%) including peripheral ulcerative keratitis and orbital pseudotumor. Mean duration of ocular disease was 4.6 years. Oral corticosteroids and other systemic immunosuppressive agents were used by 85.7% and 78.5% of patients, respectively. Over time, patients with ANCA-positive vasculitis experienced 2.75-fold higher mortality than other patients with inflammatory eye disease

    CARIBE: Cascaded IBE for Maximum Flexibility and User-side Control

    Get PDF
    Mass surveillance and a lack of end-user encryption, coupled with a growing demand for key escrow under legal oversight and certificate authority security concerns, raise the question of the appropriateness of continued general dependency on PKI. Under this context, we examine Identity-Based Encryption (IBE) as an alternative to public-key encryption. Cascade encryption, or sequential multiple encryption, is the concept of layering encryption such that the ciphertext from one encryption step is the plaintext of the next. We describe CARIBE, a cascaded IBE scheme, for which we also provide a cascaded CCA security experiment, IND-ID-C.CCA, and prove its security in the computational model. CARIBE combines the ease-of-use of IBE with key escrow, limited to the case when the entire set of participating PKGs collaborate. Furthermore, we describe a particular CARIBE scheme, CARIBE-S, where the receiver is a self-PKG – one of the several PKGs included in the cascade. CARIBE-S inherits IND-ID-C.CCA from CARIBE, and avoids key escrow entirely. In essence, CARIBE-S offers the maximum flexibility of the IBE paradigm and gives the users complete control without the key escrow problem

    L-Plastin nanobodies perturb matrix degradation, podosome formation, stability and lifetime in THP-1 macrophages

    Get PDF
    Podosomes are cellular structures acting as degradation ‘hot-spots’ in monocytic cells. They appear as dot-like structures at the ventral cell surface, enriched in F-actin and actin regulators, including gelsolin and L-plastin. Gelsolin is an ubiquitous severing and capping protein, whereas L-plastin is a leukocyte-specific actin bundling protein. The presence of the capping protein CapG in podosomes has not yet been investigated. We used an innovative approach to investigate the role of these proteins in macrophage podosomes by means of nanobodies or Camelid single domain antibodies. Nanobodies directed against distinct domains of gelsolin, L-plastin or CapG were stably expressed in macrophage-like THP-1 cells. CapG was not enriched in podosomes. Gelsolin nanobodies had no effect on podosome formation or function but proved very effective in tracing distinct gelsolin populations. One gelsolin nanobody specifically targets actin-bound gelsolin and was effectively enriched in podosomes. A gelsolin nanobody that blocks gelsolin-G-actin interaction was not enriched in podosomes demonstrating that the calcium-activated and actin-bound conformation of gelsolin is a constituent of podosomes. THP-1 cells expressing inhibitory L-plastin nanobodies were hampered in their ability to form stable podosomes. Nanobodies did not perturb Ser5 phosphorylation of L-plastin although phosphorylated L-plastin was highly enriched in podosomes. Furthermore, nanobody-induced inhibition of L-plastin function gave rise to an irregular and unstable actin turnover of podosomes, resulting in diminished degradation of the underlying matrix. Altogether these results indicate that L-plastin is indispensable for podosome formation and function in macrophages

    Functional Stability of Unliganded Envelope Glycoprotein Spikes among Isolates of Human Immunodeficiency Virus Type 1 (HIV-1)

    Get PDF
    The HIV-1 envelope glycoprotein (Env) spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34). For select Envs (n = 10), the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T90 (p = 0.029), though two ‘outliers’ were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1ADA was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER) of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines

    Genetic Signatures in the Envelope Glycoproteins of HIV-1 that Associate with Broadly Neutralizing Antibodies

    Get PDF
    A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1

    The expansion field: The value of H_0

    Full text link
    Any calibration of the present value of the Hubble constant requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4-30 Mpc is crucial. A list of 279 such galaxy distances within v<2000 km/s is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins from v=250 to at least 2000 km/s. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km/s. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km/s but increasing outwards. Due to the linearity of the expansion field the Hubble constant H_0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H_0=63.0+/-1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H_0=63.4+/-1.7 at 15 Mpc. This agrees also with the large-scale value of H_0=61.2+/-0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H_0=62.3+/-1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Typical errors of H_0 come from the use of a universal, yet unjustified P-L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.Comment: 44 pages, 4 figures, 6 tables, accepted for publication in the Astronony and Astrophysics Review 15

    The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages

    Get PDF
    • …
    corecore