3,092 research outputs found

    Study of materials performance model for aircraft interiors

    Get PDF
    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability

    New Tetrahedral Global Minimum for the 98-atom Lennard-Jones Cluster

    Full text link
    A new atomic cluster structure corresponding to the global minimum of the 98-atom Lennard-Jones cluster has been found using a variant of the basin-hopping global optimization algorithm. The new structure has an unusual tetrahedral symmetry with an energy of -543.665361, which is 0.022404 lower than the previous putative global minimum. The new LJ_98 structure is of particular interest because its tetrahedral symmetry establishes it as one of only three types of exceptions to the general pattern of icosahedral structural motifs for optimal LJ microclusters. Similar to the other exceptions the global minimum is difficult to find because it is at the bottom of a narrow funnel which only becomes thermodynamically most stable at low temperature.Comment: 3 pages, 2 figures, revte

    Unbiased Global Optimization of Lennard-Jones Clusters for N <= 201 by Conformational Space Annealing Method

    Full text link
    We apply the conformational space annealing (CSA) method to the Lennard-Jones clusters and find all known lowest energy configurations up to 201 atoms, without using extra information of the problem such as the structures of the known global energy minima. In addition, the robustness of the algorithm with respect to the randomness of initial conditions of the problem is demonstrated by ten successful independent runs up to 183 atoms. Our results indicate that the CSA method is a general and yet efficient global optimization algorithm applicable to many systems.Comment: revtex, 4 pages, 2 figures. Physical Review Letters, in pres

    Simulations and cosmological inference: A statistical model for power spectra means and covariances

    Full text link
    We describe an approximate statistical model for the sample variance distribution of the non-linear matter power spectrum that can be calibrated from limited numbers of simulations. Our model retains the common assumption of a multivariate Normal distribution for the power spectrum band powers, but takes full account of the (parameter dependent) power spectrum covariance. The model is calibrated using an extension of the framework in Habib et al. (2007) to train Gaussian processes for the power spectrum mean and covariance given a set of simulation runs over a hypercube in parameter space. We demonstrate the performance of this machinery by estimating the parameters of a power-law model for the power spectrum. Within this framework, our calibrated sample variance distribution is robust to errors in the estimated covariance and shows rapid convergence of the posterior parameter constraints with the number of training simulations.Comment: 14 pages, 3 figures, matches final version published in PR

    Polytetrahedral Clusters

    Full text link
    By studying the structures of clusters bound by a model potential that favours polytetrahedral order, we find a previously unknown series of `magic numbers' (i.e. sizes of special stability) whose polytetrahedral structures are characterized by disclination networks that are analogous to hydrocarbons.Comment: 4 pages, 4 figure

    Superconducting Rebalance Accelerometer

    Get PDF
    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described

    Thermodynamics of C incorporation on Si(100) from ab initio calculations

    Full text link
    We study the thermodynamics of C incorporation on Si(100), a system where strain and chemical effects are both important. Our analysis is based on first-principles atomistic calculations to obtain the important lowest energy structures, and a classical effective Hamiltonian which is employed to represent the long-range strain effects and incorporate the thermodynamic aspects. We determine the equilibrium phase diagram in temperature and C chemical potential, which allows us to predict the mesoscopic structure of the system that should be observed under experimentally relevant conditions.Comment: 5 pages, 3 figure

    Realizing Opportunities in Forest Growth Modelling

    Get PDF
    The world is continually changing: the emergence of new technology and new demands for pertinent information pose new challenges and possibilities for forest management. Are forest growth models keeping up with client needs? To remain relevant, modelers need to anticipate client needs, gauge the data needed to satisfy these demands, develop the tools to collect and analyze these data efficiently, and resolve how best to deliver the resulting models and other findings. Researchers and managers should jointly identify and articulate anticipated needs for the future, and initiate action to satisfy them. New technology that offers potential for innovation in forest growth modelling include modelling software, automated data collection, and animation of model outputs. New sensors in the sky and on forest machines can routinely provide data previously considered unattainable (e.g., tree coordinates, crown dimensions), as census rather than sample data. What does this revolution in data availability imply for forest growth models, especially for our choice of driving variables

    Entropic effects on the Size Evolution of Cluster Structure

    Full text link
    We show that the vibrational entropy can play a crucial role in determining the equilibrium structure of clusters by constructing structural phase diagrams showing how the structure depends upon both size and temperature. These phase diagrams are obtained for example rare gas and metal clusters.Comment: 5 pages, 3 figure
    corecore