18 research outputs found

    Divergence Times and the Evolutionary Radiation of New World Monkeys (Platyrrhini, Primates): An Analysis of Fossil and Molecular Data

    Get PDF
    The estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27–31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21–29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade.Fil: Perez, Sergio Ivan. Universidad Nacional de la Plata. Facultad de Cs.naturales y Museo. Departamento Cientifico de Antropologia;Fil: Tejedor, Marcelo Fabian. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Nacional Patagonico;Fil: Novo, Nelson Martin. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Nacional Patagonico;Fil: Arístide, Leandro. Universidad Nacional de la Plata. Facultad de Cs.naturales y Museo. Departamento Cientifico de Antropologia

    Early evolutionary diversification of mandible morphology in the New World monkeys (Primate, Platyrrhini)

    Get PDF
    New World monkeys (order Primates) are an example of a major mammalian evolutionary radiation in the Americas, with a contentious fossil record. There is evidence of an early platyrrhine occupation of this continent by the EoceneeOligocene transition, evolving in isolation from the Old World primates from then on, and developing extensive morphological and size variation. Previous studies postulated that the platyrrhine clade arose as a local version of the Simpsonian ecospace model, with an early phase involving a rapid increase in morphological and ecological diversity driven by selection and ecological opportunity, followed by a diversification rate that slowed due to niche-filling. Under this model, variation in extant platyrrhines, in particular anatomical complexes, may resemble patterns seen among middleelate Miocene (10e14 Ma) platyrrhines as a result of evolutionary stasis. Here we examine the mandible in this regard, which may be informative about the dietary and phylogenetic history of the New World monkeys. Specifically, we test the hypothesis that the Simpsonian ecospace model applies to the platyrrhine mandible through a geometric morphometric analysis of digital images of the jaws of extant and extinct species, and we compare these results to those obtained using a phylogenetic comparative approach based on extant species. The results show a marked phylogenetic structure in the mandibular morphology of platyrrhines. Principal component analyses highlight the morphological diversity among modern forms, and reveal a similar range of variation for the clade when fossil specimens are included. Disparity-Through-Time analysis shows that most of the shape variation between platyrrhines originated early in their evolution (between 20 and 15 Ma). Our results converge with previous studies of body mass, cranial shape, the brain and the basicranium to show that platyrrhine evolution might have been shaped by an early increase in morphological variation followed by a decelerated rate of diversification and evolutionary stasis.Facultad de Ciencias Naturales y Muse

    Modeling lineage and phenotypic diversification in the New World monkey (Platyrrhini, Primates) radiation

    Get PDF
    Adaptive radiations that have taken place in the distant past can now be more thoroughly studied with the availability of large molecular phylogenies and comparative data drawn from extant and fossil species. Platyrrhines are a good example of a major mammalian evolutionary radiation confined to a single continent, involving a relatively large temporal scale and documented by a relatively small but informative fossil record. Here, we present comparative evidence using data on extant and fossil species to explore alternative evolutionary models in an effort to better understand the process of platyrrhine lineage and phenotypic diversification. Specifically, we compare the likelihood of null models of lineage and phenotypic diversification versus various models of adaptive evolution. Moreover, we statistically explore the main ecological dimension behind the platyrrhine diversification. Contrary to the previous proposals, our study did not find evidence of a rapid lineage accumulation in the phylogenetic tree of extant platyrrhine species. However, the fossil-based diversity curve seems to show a slowdown in diversification rates toward present times. This also suggests an early high rate of extinction among lineages within crown Platyrrhini. Finally, our analyses support the hypothesis that the platyrrhine phenotypic diversification appears to be characterized by an early and profound differentiation in body size related to a multidimensional niche model, followed by little subsequent change (i.e., stasis).Facultad de Ciencias Naturales y Muse

    Modeling lineage and phenotypic diversification in the New World monkey (Platyrrhini, Primates) radiation

    Get PDF
    Adaptive radiations that have taken place in the distant past can now be more thoroughly studied with the availability of large molecular phylogenies and comparative data drawn from extant and fossil species. Platyrrhines are a good example of a major mammalian evolutionary radiation confined to a single continent, involving a relatively large temporal scale and documented by a relatively small but informative fossil record. Here, we present comparative evidence using data on extant and fossil species to explore alternative evolutionary models in an effort to better understand the process of platyrrhine lineage and phenotypic diversification. Specifically, we compare the likelihood of null models of lineage and phenotypic diversification versus various models of adaptive evolution. Moreover, we statistically explore the main ecological dimension behind the platyrrhine diversification. Contrary to the previous proposals, our study did not find evidence of a rapid lineage accumulation in the phylogenetic tree of extant platyrrhine species. However, the fossil-based diversity curve seems to show a slowdown in diversification rates toward present times. This also suggests an early high rate of extinction among lineages within crown Platyrrhini. Finally, our analyses support the hypothesis that the platyrrhine phenotypic diversification appears to be characterized by an early and profound differentiation in body size related to a multidimensional niche model, followed by little subsequent change (i.e., stasis).Fil: Arístide, Leandro. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: Rosenberger, Alfred L.. City University Of New York; Estados UnidosFil: Tejedor, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Perez, Sergio Ivan. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentin

    Modeling lineage and phenotypic diversification in the New World monkey (Platyrrhini, Primates) radiation

    Get PDF
    Adaptive radiations that have taken place in the distant past can now be more thoroughly studied with the availability of large molecular phylogenies and comparative data drawn from extant and fossil species. Platyrrhines are a good example of a major mammalian evolutionary radiation confined to a single continent, involving a relatively large temporal scale and documented by a relatively small but informative fossil record. Here, we present comparative evidence using data on extant and fossil species to explore alternative evolutionary models in an effort to better understand the process of platyrrhine lineage and phenotypic diversification. Specifically, we compare the likelihood of null models of lineage and phenotypic diversification versus various models of adaptive evolution. Moreover, we statistically explore the main ecological dimension behind the platyrrhine diversification. Contrary to the previous proposals, our study did not find evidence of a rapid lineage accumulation in the phylogenetic tree of extant platyrrhine species. However, the fossil-based diversity curve seems to show a slowdown in diversification rates toward present times. This also suggests an early high rate of extinction among lineages within crown Platyrrhini. Finally, our analyses support the hypothesis that the platyrrhine phenotypic diversification appears to be characterized by an early and profound differentiation in body size related to a multidimensional niche model, followed by little subsequent change (i.e., stasis).Facultad de Ciencias Naturales y Muse

    Brain shape convergence in the adaptive radiation of New World monkeys

    Get PDF
    Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade.Facultad de Ciencias Naturales y Muse

    Brain shape convergence in the adaptive radiation of New World monkeys

    Get PDF
    Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade.Facultad de Ciencias Naturales y Muse

    Early evolutionary diversification of mandible morphology in the New World monkeys (Primate, Platyrrhini)

    No full text
    New World monkeys (order Primates) are an example of a major mammalian evolutionary radiation in the Americas, with a contentious fossil record. There is evidence of an early platyrrhine occupation of this continent by the Eocene–Oligocene transition, evolving in isolation from the Old World primates from then on, and developing extensive morphological and size variation. Previous studies postulated that the platyrrhine clade arose as a local version of the Simpsonian ecospace model, with an early phase involving a rapid increase in morphological and ecological diversity driven by selection and ecological opportunity, followed by a diversification rate that slowed due to niche-filling. Under this model, variation in extant platyrrhines, in particular anatomical complexes, may resemble patterns seen among middle–late Miocene (10–14 Ma) platyrrhines as a result of evolutionary stasis. Here we examine the mandible in this regard, which may be informative about the dietary and phylogenetic history of the New World monkeys. Specifically, we test the hypothesis that the Simpsonian ecospace model applies to the platyrrhine mandible through a geometric morphometric analysis of digital images of the jaws of extant and extinct species, and we compare these results to those obtained using a phylogenetic comparative approach based on extant species. The results show a marked phylogenetic structure in the mandibular morphology of platyrrhines. Principal component analyses highlight the morphological diversity among modern forms, and reveal a similar range of variation for the clade when fossil specimens are included. Disparity-Through-Time analysis shows that most of the shape variation between platyrrhines originated early in their evolution (between 20 and 15 Ma). Our results converge with previous studies of body mass, cranial shape, the brain and the basicranium to show that platyrrhine evolution might have been shaped by an early increase in morphological variation followed by a decelerated rate of diversification and evolutionary stasis.Fil: Rocatti, Guido. Universidad Nacional de La Plata. Facultad de Cienicas Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arístide, Leandro. Universidad Nacional de La Plata. Facultad de Cienicas Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rosenberger, Alfred L.. Brooklyn College; Estados UnidosFil: Perez, Sergio Ivan. Universidad Nacional de La Plata. Facultad de Cienicas Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Intra and interspecific variation in cranial morphology on the southernmost distributed Cebus (Platyrrhini, primates) species

    Get PDF
    Capuchin monkeys (Cebus) are one of the genera with the widest distribution among Neotropical primates (New World Monkeys, Platyrrhini), accompanied by an elevated genetic, phenotypic, behavioral, morphological, and ecological diversity, both at the interspecific and population levels. Despite being one of the most studied primate genera, this high diversity has led to a particularly complex and controversial taxonomy. In this contribution, we explored the patterns of skull size and shape variation among the southernmost distributed populations of Cebus using three-dimensional geometric morphometric techniques. Results showed a marked morphological differentiation (in size and shape) between previously recognized species (C. nigritus and southern C. libidinosus), and also among C. libidinosus populations, which were quantitatively related with the geographic distance between them. This pattern supports a differentiation between the northwestern Argentina and southern Bolivia and Paraguay forms. Other taxonomic implications are also discussed.Fil: Arístide, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Soto, Ignacio Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Mudry, Marta Dolores. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Nieves, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin
    corecore