4 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Produção de alface hidropônica em três ambientes de cultivo Production of hydroponic lettuce in three environments

    Get PDF
    Propôs-se avaliar a produção hidropônica de alface-crespa, variedade "Vera", em bancadas inclinadas com canais de 100 mm, utilizando a técnica de filme de solução nutritiva, em resposta à aplicação de dióxido de carbono e ao resfriamento evaporativo. Realizaram-se cinco ciclos de cultivo nos períodos de 20-3 a 17-4-2000 (C1); 25-5 a 29-6-2000 (C2); 13-7 a 21-8-2000 (C3); 27-8 a 2-10-2000 (C4) e 12-12-2000 a 10-1-2001 (C5). Avaliaram-se três casas de vegetação, sendo casa de vegetação sem sistema de resfriamento evaporativo do ar e sem injeção aérea de CO2 (A1); casa de vegetação com injeção aérea de CO2 e sem sistema de resfriamento evaporativo do ar (A2), e casa de vegetação com injeção aérea de CO2 e com sistema de resfriamento evaporativo do ar do tipo meio poroso-exaustor (A3). Avaliaram-se as massas frescas e secas em gramas, o número de folhas e a área foliar em mm². Utilizou-se do delineamento inteiramente casualizado, em que, no ciclo C1, utilizaram-se 48 repetições por ambiente; para os ciclos C2, C3 e C5, foram 64 repetições, e para o ciclo C4, foram 24 repetições. O ambiente climatizado com incremento de dióxido de carbono promoveu melhor desenvolvimento das plantas, com maior número de folhas comercializáveis. Em ambientes não climatizados, o incremento de CO2 não resultou em aumento de produtividade da alface para a maioria dos ciclos. Em épocas de temperaturas mais elevadas, obtiveram-se plantas maiores, com maior número de folhas.<br>It was proposed to evaluate the hydroponic lettuce production, variety "Vera", on inclined benches with channels of 100 mm, and Nutrient Film Technique, as answer to carbon dioxide application and evaporative cooling. There were five cycles of cultivation from March, 20th to April, 17th (C1); from May, 25th to June, 29th (C2); from July, 13th to August, 20th (C3); from August, 27th to October, 10th (C4); from December, 12th to January, 10th (C5). In three greenhouses were tested the following systems: (A1) without evaporative cooling air CO2 aerial injection, (A2) with CO2 aerial injection and without evaporative cooling and (A3) with CO2 aerial injection and pad-fan evaporative cooling system. The fresh and dry mass of leaves in grams, number of leaves and leaf area in square millimeter were evaluated. The completely randomized statistical analysis was used. The cycle C1 were used 48 replications, for cycles C2, C3 and C5 were used 64 replications and C5 were used 24 replications. The results showed that greenhouse with evaporative cooling system and CO2 allow better development and greater lettuce yield. It was possible to conclude that the aerial injection of CO2, in the absence of evaporative cooling system, did not lead increasing the lettuce productivity to most cycles. Bigger lettuce leaf areas were found in periods with higher temperatures
    corecore