26 research outputs found

    Multi-Wavelength Photobiomodulation Therapy Combined with Static Magnetic Field on Long-Term Pulmonary Complication after COVID-19: A Case Report

    Get PDF
    Introduction: Photobiomodulation therapy, alone (PBMT) or combined with a static magnetic field (PBMT-sMF), has been demonstrated to be effective in the regeneration of tissues, modulation of inflammatory processes, and improvement in functional capacity. However, the effects of PBMT-sMF on the pulmonary system and COVID-19 patients remain scarce. Therefore, in this case report, we demonstrated the use of PBMT-sMF for peripheral oxygen saturation, pulmonary function, massive lung damage, and fibrosis as a pulmonary complication after COVID-19. Case report: A 53-year-old Mexican man who presented with decreased peripheral oxygen saturation, massive lung damage, and fibrosis after COVID-19 received PBMT-sMF treatment once a day for 45 days. The treatment was irradiated at six sites in the lower thorax and upper abdominal cavity and two sites in the neck area. We observed that the patient was able to leave the oxygen support during the treatment, and increase his peripheral oxygen saturation. In addition, the patient showed improvements in pulmonary severity scores and radiological findings. Finally, the patient presented with normal respiratory mechanics parameters in the medium-term, indicating total pulmonary recovery. Conclusions: The use of PBMT-sMF may potentially lead to safe treatment of and recovery from pulmonary complications after COVID-19, with regard to the structural and functional aspects.publishedVersio

    Photobiomodulation Therapy is Able to Modulate PGE2 Levels in Patients With Chronic Non‐Specific Low Back Pain: A Randomized Placebo‐Controlled Trial

    Get PDF
    Background and Objectives Non-specific low back pain (LBP) is responsible for triggering increased biomarkers levels. In this way, photobiomodulation therapy (PBMT) may be an interesting alternative to treat these patients. One of the possible biological mechanisms of PBMT involved to decrease pain intensity in patients with musculoskeletal disorders is modulation of the inflammatory mediators’ levels. The aim of this study was to evaluate the effects of PBMT compared with placebo on inflammatory mediators’ levels and pain intensity in patients with chronic non-specific LBP. Study Design/Materials and Methods A prospectively registered, randomized triple-blinded (volunteers, therapists, and assessors), placebo-controlled trial was performed. Eighteen patients with chronic non-specific LBP were recruited and treated with a single session of active PBMT or placebo PBMT. The primary outcome of the study was serum prostaglandin E2 levels and the secondary outcomes were tumor necrosis factor-α, interleukin-6 levels, and pain intensity. All outcomes were measured before and after 15 minutes of treatment session. Results PBMT was able to decrease prostaglandin E2 levels at post-treatment compared with placebo, with a mean difference of −1470 pg/ml, 95% confidence interval −2906 to −33.67 in patients with LBP. There was no difference between groups in the other measured outcomes. Patients did not report any adverse events. Conclusion Our results suggest that PBMT was able to modulate prostaglandin E2 levels, indicating that this may be one of the mechanisms involved in the analgesic effects of PBMT in patients with LBP.publishedVersio

    Does photobiomodulation therapy combined to static magnetic field (PBMT-sMF) promote ergogenic effects even when the exercised muscle group is not irradiated? A randomized, triple-blind, placebo-controlled trial

    Get PDF
    Background: The direct application of photobiomodulation therapy (PBMT) using low-level laser therapy (LLLT) and light emitting diodes (LEDs) combined with a static magnetic field (sMF) (PBMT-sMF) to target tissues is shown to improve muscle performance and recovery. Studies have reported possible PBMT effects when a local distant to the target tissue is irradiated. Notably, the extent of these effects on musculoskeletal performance and the optimal site of irradiation remain unclear, although this information is clinically important since these aspects could directly affect the magnitude of the effect. Therefore, we investigated the effects of local and non-local PBMT-sMF irradiations on musculoskeletal performance and post-exercise recovery before an eccentric exercise protocol. Methods: This randomized, triple-blind (participants, therapists and assessors), placebo-controlled trial included 30 healthy male volunteers randomly assigned to the placebo, local, and non-local groups. Active or placebo PBMT-sMF was applied to 6 sites of the quadriceps muscle of both legs. An eccentric exercise protocol was used to induce fatigue. The primary outcome was peak torque assessed by maximal voluntary contraction (MVC). The secondary outcomes were delayed onset muscle soreness (DOMS) measured by visual analogue scale (VAS), muscle injury assessed by serum creatine kinase activity (CK), and blood lactate levels. Evaluations were performed before the eccentric exercise protocol (baseline), as well as immediately after and 1, 24, 48, and 72 h upon protocol completion. Results: Ten volunteers were randomized per group and analysed for all outcomes. Compared to the placebo and non-local groups, irradiation with PBMT-SMF led to statistically significant improvement (p < 0.05) with regard to all variables in the local group. The outcomes observed in the non-local group were similar to those in the placebo group with regard to all variables. The volunteers did not report any adverse effects. Conclusion: Our results support the current evidence that local irradiation of all exercised muscles promotes ergogenic effects. PBMT-sMF improved performance and reduced muscle fatigue only when applied locally to muscles involved in physical activity.publishedVersio

    Effectiveness of Low-Level Laser Therapy Associated with Strength Training in Knee Osteoarthritis: Protocol for a Randomized Placebo-Controlled Trial

    Get PDF
    Physical activity and low-level laser therapy (LLLT) can reduce knee osteoarthritis (KOA) inflammation. We are conducting a randomized placebo-controlled trial to investigate the long-term effectiveness of LLLT combined with strength training (ST) in persons with KOA, since it, to our knowledge, has not been investigated before. Fifty participants were enrolled. LLLT and ST was performed 3 times per week over 3 and 8 weeks, respectively. In the LLLT group, 3 Joules of 904 nm wavelength laser was applied to 15 spots per knee (45 Joules/knee/session). The primary outcomes are pain during movement, at night and at rest (Visual Analogue Scale) and global pain (Knee injury and Osteoarthritis Outcome Score, KOOS) pain subscale. The secondary outcomes are KOOS disability and quality-of-life, analgesic usage, global health change, knee active range of motion, 30 s chair stand, maximum painless isometric knee extension strength, knee pain pressure threshold and real-time ultrasonography-assessed suprapatellar effusion, meniscal neovascularization and femur cartilage thickness. All the outcomes are assessed 0, 3, 8, 26 and 52 weeks post-randomization, except for global health change, which is only evaluated at completed ST. This study features the blinding of participants, assessors and therapists, and will improve our understanding of what occurs with the local pathophysiology, tissue morphology and clinical status of persons with KOA up to a year after the initiation of ST and a higher 904 nm LLLT dose than in any published trial on this topic.publishedVersio

    Photobiomodulation therapy does not decrease pain and disability in people with non-specific low back pain: a systematic review

    Get PDF
    Question: In people with non-specific low back pain (LBP), what are the effects of photobiomodulation therapy (PBMT) on pain, disability and other outcomes when compared with no intervention, sham PBMT and other treatments, and when used as an adjunct to other treatments? Design: Systematic review of randomised trials with meta-analysis. Participants: People with acute/subacute or chronic non-specific LBP. Interventions: Any type of PBMT (laser class I, II and III and light-emitting diodes) compared with no treatment, sham PBMT and other types of treatment, or used as an adjunct to another treatment. Outcome measures: Pain intensity, disability, overall improvement, quality of life, work absence and adverse effects. Results: Twelve randomised controlled trials were included (pooled n = 1,046). Most trials had low risk of bias. Compared with sham PBMT, the effect of PBMT on pain and disability was clinically unimportant in people with acute/subacute or chronic LBP. In people with chronic LBP, there was no clinically important difference between the effect of PBMT and the effect of exercise on pain or disability. Although benefits were observed on some other outcomes, these estimates were imprecise and/or based on low-quality evidence. PBMT was estimated to reduce pain (MD −11.20, 95% CI −20.92 to −1.48) and disability (MD −11.90, 95% CI −17.37 to −6.43) more than ultrasound, but these confidence intervals showed important uncertainty about whether the differences in effect were worthwhile or trivial. Conversely, PBMT was estimated to reduce pain (MD 19.00, 95% CI 9.49 to 28.51) and disability (MD 17.40, 95% CI 8.60 to 26.20) less than Tecar (Energy Transfer Capacitive and Resistive) therapy, with marginal uncertainty that these differences in effect were worthwhile. Conclusion: Current evidence does not support the use of PBMT to decrease pain and disability in people with non-specific LBP.publishedVersio

    Short-and Long-Term Effectiveness of Low-Level Laser Therapy Combined with Strength Training in Knee Osteoarthritis: A Randomized Placebo-Controlled Trial

    Get PDF
    Background: Both physical activity and low-level laser therapy (LLLT) can reduce knee osteoarthritis (KOA) inflammation. We conducted a randomized clinical trial to investigate the short- and long-term effectiveness of LLLT combined with strength training in persons with KOA. Methods: Fifty participants were randomly divided in two groups, one with LLLT plus strength training (n = 26) and one with placebo LLLT plus strength training (n = 24). LLLT and strength training were performed triweekly for 3 and 8 weeks, respectively. In the laser group, 3 joules 904 nm wavelength laser was applied to fifteen points (45 joules) per knee per session. Patient-reported outcomes, physical tests, and ultrasonography assessments were performed at baseline and 3, 8, 26, and 52 weeks after initial LLLT or placebo therapy. The primary outcomes were pain on movement, at rest, at night (Visual Analogue Scale), and globally (Knee injury and Osteoarthritis Outcome Score (KOOS) subscale). Parametric data were assessed with analysis of variance using Šidák’s correction. Results: There were no significant between-group differences in the primary outcomes. However, in the laser group there was a significantly reduced number of participants using analgesic and non-steroidal anti-inflammatory drugs and increased performance in the sit-to-stand test versus placebo-control at week 52. The joint line pain pressure threshold (PPT) improved more in the placebo group than in the laser group, but only significantly at week 8. No other significant treatment effects were present. However, pain on movement and joint line PPT were worse in the placebo group at baseline, and therefore, it had more room for improvement. The short-term percentage of improvement in the placebo group was much higher than in similar trials. Conclusions: Pain was reduced substantially in both groups. LLLT seemed to provide a positive add-on effect in the follow-up period in terms of reduced pain medication usage and increased performance in the sit-to-stand test.publishedVersio

    Immediate effects of photobiomodulation therapy combined with a static magnetic field on the subsequent performance: a preliminary randomized crossover triple-blinded placebo-controlled trial

    Get PDF
    There is evidence about the effects of photobiomodulation therapy (PBMT) alone and combined with a static magnetic field (PBMT-sMF) on skeletal muscle fatigue, physical performance and post-exercise recovery in different types of exercise protocols and sports activity. However, the effects of PBMT-sMF to improve the subsequent performance after a first set of exercises are unknown. Therefore, the aim of this study was to investigate the effects of PBMT-sMF, applied between two sets of exercises, on the subsequent physical performance. A randomized, crossover, triple-blinded (assessors, therapist, and volunteers), placebo-controlled trial was carried out. Healthy non-athlete male volunteers were randomized and treated with a single application of PBMT-sMF and placebo between two sets of an exercise protocol performed on isokinetic dynamometer. The order of interventions was randomized. The primary outcome was fatigue index and the secondary outcomes were total work, peak work, and blood lactate levels. Twelve volunteers were randomized and analyzed to each sequence. PBMT-sMF decreased the fatigue index compared to the placebo PBMT-sMF at second set of the exercise protocol (MD = -6.08, 95% CI -10.49 to -1.68). In addition, PBMT-sMF decreased the blood lactate levels post-intervention, and after the second set of the exercise protocol compared to placebo (p<0.05). There was no difference between PBMT-sMF and placebo in the remaining outcomes tested. Volunteers did not report adverse events. Our results suggest that PBMT-sMF is able to decrease skeletal muscle fatigue, accelerating post-exercise recovery and, consequently, increasing subsequent physical performance when applied between two sets of exercises.publishedVersio

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy

    Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better?

    Get PDF
    In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled crossover trial was performed in ten healthy male volunteers. They were treated with active red LLLT, active infrared LLLT (660 or 830 nm, 50 mW, 17.85 W/cm2, 100 s irradiation per point, 5 J, 1,785 J/cm2 at each point irradiated, total 20 J irradiated per muscle) or an identical placebo LLLT at four points of the biceps brachii muscle for 3 min before exercise (voluntary isometric elbow flexion for 60 s). The mean peak force was significantly greater (p < 0.05) following red (12.14%) and infrared LLLT (14.49%) than following placebo LLLT, and the mean average force was also significantly greater (p < 0.05) following red (13.09%) and infrared LLLT (13.24%) than following placebo LLLT. There were no significant differences in mean average force or mean peak force between red and infrared LLLT. We conclude that both red than infrared LLLT are effective in delaying the development skeletal muscle fatigue and in enhancement of skeletal muscle performance. Further studies are needed to identify the specific mechanisms through which each wavelength acts

    Multi-Wavelength Photobiomodulation Therapy Combined with Static Magnetic Field on Long-Term Pulmonary Complication after COVID-19: A Case Report

    No full text
    Introduction: Photobiomodulation therapy, alone (PBMT) or combined with a static magnetic field (PBMT-sMF), has been demonstrated to be effective in the regeneration of tissues, modulation of inflammatory processes, and improvement in functional capacity. However, the effects of PBMT-sMF on the pulmonary system and COVID-19 patients remain scarce. Therefore, in this case report, we demonstrated the use of PBMT-sMF for peripheral oxygen saturation, pulmonary function, massive lung damage, and fibrosis as a pulmonary complication after COVID-19. Case report: A 53-year-old Mexican man who presented with decreased peripheral oxygen saturation, massive lung damage, and fibrosis after COVID-19 received PBMT-sMF treatment once a day for 45 days. The treatment was irradiated at six sites in the lower thorax and upper abdominal cavity and two sites in the neck area. We observed that the patient was able to leave the oxygen support during the treatment, and increase his peripheral oxygen saturation. In addition, the patient showed improvements in pulmonary severity scores and radiological findings. Finally, the patient presented with normal respiratory mechanics parameters in the medium-term, indicating total pulmonary recovery. Conclusions: The use of PBMT-sMF may potentially lead to safe treatment of and recovery from pulmonary complications after COVID-19, with regard to the structural and functional aspects
    corecore