145 research outputs found

    Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein

    Get PDF
    AbstractLow density lipoprotein (LDL) oxidation within the arterial wall may contribute to the disease of atherosclerosis. We have investigated the conditions under which transferrin (the major iron-carrying protein in plasma) may release iron ions to catalyse the oxidation of LDL. Transferrin that had been incubated at pH 5.5 released approximately 10% of its bound iron in 24 h, as measured by ultrafiltration and atomic absorption spectroscopy. Furthermore, transferrin co-incubated with LDL and l-cysteine at pH 5.5 resulted in the oxidation of the LDL as measured by thiobarbituric acid-reactive substances and electrophoretic mobility. This effect was observed at transferrin concentrations as low as 40% of its average plasma concentration. The release of iron from transferrin in atherosclerotic lesions due to a localised acidic pH may help to explain why LDL oxidation occurs in these lesions

    Cysteamine inhibits lysosomal oxidation of low density lipoprotein in human macrophages and reduces atherosclerosis in mice

    Get PDF
    BACKGROUND AND AIMS: We have shown previously that low density lipoprotein (LDL) aggregated by vortexing is internalised by macrophages and oxidised by iron in lysosomes to form the advanced lipid/protein oxidation product ceroid. We have now used sphingomyelinase-aggregated LDL, a more pathophysiological form of aggregated LDL, to study lysosomal oxidation of LDL and its inhibition by antioxidants, including cysteamine (2-aminoethanethiol), which concentrates in lysosomes by several orders of magnitude. We have also investigated the effect of cysteamine on atherosclerosis in mice. METHODS: LDL was incubated with sphingomyelinase, which increased its average particle diameter from 26 to 170 nm, and was then incubated for up to 7 days with human monocyte-derived macrophages. LDL receptor-deficient mice were fed a Western diet (19–22 per group) and some given cysteamine in their drinking water at a dose equivalent to that used in cystinosis patients. The extent of atherosclerosis in the aortic root and the rest of the aorta was measured. RESULTS: Confocal microscopy revealed lipid accumulation in lysosomes in the cultured macrophages. Large amounts of ceroid were produced, which colocalised with the lysosomal marker LAMP2. The antioxidants cysteamine, butylated hydroxytoluene, amifostine and its active metabolite WR-1065, inhibited the production of ceroid. Cysteamine at concentrations well below those expected to be present in lysosomes inhibited the oxidation of LDL by iron ions at lysosomal pH (pH 4.5) for prolonged periods. Finally, we showed that the extent of atherosclerotic lesions in the aortic root and arch of mice was significantly reduced by cysteamine. CONCLUSIONS: These results support our hypothesis that lysosomal oxidation of LDL is important in atherosclerosis and hence antioxidant drugs that concentrate in lysosomes might provide a novel therapy for this disease

    Non-oxidative modification of low density lipoprotein by ruptured myocytes

    Get PDF
    AbstractIn this study, the interaction of ruptured cardiac myocytes with low density lipoprotein (LDL) has been investigated and the consequent extent of uptake by macrophages. The results show that lysate released from ruptured myocytes is capable of inducing LDL oxidation and that the resulting modified form is recognised and degraded by macrophages. Peroxyl radical scavengers inhibit the LDL oxidation but not the macrophage uptake suggesting that LDL can be modified by mechanisms that are independent of oxidative processes by intracellular constituents of cardiac myocytes

    Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.

    Get PDF
    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history

    Epiparasitic plants specialized on arbuscular mycorrhizal fungi

    Get PDF
    Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature
    • …
    corecore