1,277 research outputs found

    Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time

    Get PDF
    We present a single-molecule tool called the CoPro (Concentration of Proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrates its utility experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration at physiological expression levels in living S. cerevisiae cells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a 4-fold shift towards higher values in concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, which is almost exclusively localized in the nucleus under high and..

    An automated image analysis framework for segmentation and division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy

    Get PDF
    Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells

    Simplified simulation models for control studies of turbojet engines

    Get PDF
    The essential dynamical characteristics of a simple single spool turbojet engine were determined through simulation of low order system models on an analog computer. An accurate model was studied and system complexity was reduced through various linearizations and approximations. A derivation of a seventh order simplified simulation model is presented with a derivation of an even simpler third order model, and simulation results from each. The control problem studied is one of getting from zero fuel flow equilibrium to a high thrust equilibrium while taking into account surge margin and turbine inlet temperature constraints

    Evolution of the interfacial structure of LaAlO3 on SrTiO3

    Full text link
    The evolution of the atomic structure of LaAlO3 grown on SrTiO3 was investigated using surface x-ray diffraction in conjunction with model-independent, phase-retrieval algorithms between two and five monolayers film thickness. A depolarizing buckling is observed between cation and oxygen positions in response to the electric field of polar LaAlO3, which decreases with increasing film thickness. We explain this in terms of competition between elastic strain energy, electrostatic energy, and electronic reconstructions. The findings are qualitatively reproduced by density-functional theory calculations. Significant cationic intermixing across the interface extends approximately three monolayers for all film thicknesses. The interfaces of films thinner than four monolayers therefore extend to the surface, which might affect conductivity

    Structural Examination of Au/Ge(001) by Surface X-Ray Diffraction and Scanning Tunneling Microscopy

    Full text link
    The one-dimensional reconstruction of Au/Ge(001) was investigated by means of autocorrelation functions from surface x-ray diffraction (SXRD) and scanning tunneling microscopy (STM). Interatomic distances found in the SXRD-Patterson map are substantiated by results from STM. The Au coverage, recently determined to be 3/4 of a monolayer of gold, together with SXRD leads to three non-equivalent positions for Au within the c(8x2) unit cell. Combined with structural information from STM topography and line profiling, two building blocks are identified: Au-Ge hetero-dimers within the top wire architecture and Au homo-dimers within the trenches. The incorporation of both components is discussed using density functional theory and model based Patterson maps by substituting Germanium atoms of the reconstructed Ge(001) surface.Comment: 5 pages, 3 figure
    corecore