The evolution of the atomic structure of LaAlO3 grown on SrTiO3 was
investigated using surface x-ray diffraction in conjunction with
model-independent, phase-retrieval algorithms between two and five monolayers
film thickness. A depolarizing buckling is observed between cation and oxygen
positions in response to the electric field of polar LaAlO3, which decreases
with increasing film thickness. We explain this in terms of competition between
elastic strain energy, electrostatic energy, and electronic reconstructions.
The findings are qualitatively reproduced by density-functional theory
calculations. Significant cationic intermixing across the interface extends
approximately three monolayers for all film thicknesses. The interfaces of
films thinner than four monolayers therefore extend to the surface, which might
affect conductivity