1,661 research outputs found

    Global Cosmological Parameters Determined Using Classical Double Radio Galaxies

    Get PDF
    A sample of 20 powerful extended radio galaxies with redshifts between zero and two were used to determine constraints on global cosmological parameters. Data for six radio sources were obtained from the VLA archive, analyzed, and combined with the sample of 14 radio galaxies used previously by Guerra & Daly to determine cosmological parameters. The results are consistent with our previous results, and indicate that the current value of the mean mass density of the universe is significantly less than the critical value. A universe with Ωm\Omega_m of unity is ruled out at 99.0% confidence, and the best fitting values of Ωm\Omega_m in matter are 0.100.10+0.250.10^{+0.25}_{-0.10} and 0.250.25+0.35-0.25^{+0.35}_{-0.25} assuming zero space curvature and zero cosmological constant, respectively. Note that identical results obtain when the low redshift bin, which includes Cygnus A, is excluded; these results are independent of whether the radio source Cygnus A is included. The method does not rely on a zero-redshift normalization. The radio properties of each source are also used to determine the density of the gas in the vicinity of the source, and the beam power of the source. The six new radio sources have physical characteristics similar to those found for the original 14 sources. The density of the gas around these radio sources is typical of gas in present day clusters of galaxies. The beam powers are typically about 1045erg s110^{45} \hbox{erg s}^{-1}.Comment: 39 pages includes 21 figures, accepted to Ap

    New lambda6cm observations of the Cygnus Loop

    Full text link
    Radio continuum and polarization observations of the entire Cygnus Loop at 6cm wavelength were made with the Urumqi 25m telescope. The 6cm map is analysed together with recently published maps from the Effelsberg 100m telescope at 21cm and 11cm. The integrated flux density of the Cygnus Loop at 6cm is 90+/-9Jy, which implies a spectral index of -0.40+/-0.06 being consistent with that of Uyaniker et al. (2004) in the wavelength range up to 11cm. This rules out any global spectral steepening up to 6cm. However, small spectral index variations in some regions of the source are possible, but there are no indications for any spectral curvature. The linear polarization data at 6cm show percentage polarizations up to 35% in some areas of the Cygnus Loop, exceeding those observed at 11cm. The Rotation Measure is around -21rad/m^2 in the southern area, which agrees with previous observations. However, the distribution of Rotation Measures is rather complex in the northern part of the Cygnus Loop, where the 21cm emission is totally depolarized. Rotation Measures based on 11cm and 6cm data are significantly larger than in the southern part. The difference in the polarization characteristic between the northern and southern part supports previous ideas that the Cygnus Loop consists of two supernova remnants.Comment: 11 pages, 10 figures, accepted for publication in A&

    Spinning compact binary inspiral II: Conservative angular dynamics

    Get PDF
    We establish the evolution equations of the set of independent variables characterizing the 2PN rigorous conservative dynamics of a spinning compact binary, with the inclusion of the leading order spin-orbit, spin-spin and mass quadrupole - mass monopole effects, for generic (noncircular, nonspherical) orbits. More specifically, we give a closed system of first order ordinary differential equations for the orbital elements of the osculating ellipse and for the angles characterizing the spin orientations with respect to the osculating orbit. We also prove that (i) the relative angle of the spins stays constant for equal mass black holes, irrespective of their orientation, and (ii) the special configuration of equal mass black holes with equal, but antialigned spins, both laying in the plane of motion (leading to the largest recoil found in numerical simulations) is preserved at 2PN level of accuracy, with leading order spin-orbit, spin-spin and mass quadrupolar contributions included.Comment: v2: 19 pages, extended, improved, published versio

    Detecting the harmonics of oscillations with time-variable frequencies

    Get PDF
    A method is introduced for the spectral analysis of complex noisy signals containing several frequency components. It enables components that are independent to be distinguished from the harmonics of nonsinusoidal oscillatory processes of lower frequency. The method is based on mutual information and surrogate testing combined with the wavelet transform, and it is applicable to relatively short time series containing frequencies that are time variable. Where the fundamental frequency and harmonics of a process can be identified, the characteristic shape of the corresponding oscillation can be determined, enabling adaptive filtering to remove other components and nonoscillatory noise from the signal. Thus the total bandwidth of the signal can be correctly partitioned and the power associated with each component then can be quantified more accurately. The method is first demonstrated on numerical examples. It is then used to identify the higher harmonics of oscillations in human skin blood flow, both spontaneous and associated with periodic iontophoresis of a vasodilatory agent. The method should be equally relevant to all situations where signals of comparable complexity are encountered, including applications in astrophysics, engineering, and electrical circuits, as well as in other areas of physiology and biology

    A Chandra study of particle acceleration in the multiple hotspots of nearby radio galaxies

    Full text link
    We present Chandra observations of a small sample of nearby classical double radio galaxies which have more than one radio hotspot in at least one of their lobes. The X-ray emission from the hotspots of these comparatively low-power objects is expected to be synchrotron in origin, and therefore to provide information about the locations of high-energy particle acceleration. In some models of the relationship between the jet and hotspot the hotspots that are not the current jet termination point should be detached from the energy supply from the active nucleus and therefore not capable of accelerating particles to high energies. We find that in fact some secondary hotspots are X-ray sources, and thus probably locations for high-energy particle acceleration after the initial jet termination shock. In detail, though, we show that the spatial structures seen in X-ray are not consistent with naive expectations from a simple shock model: the current locations of the acceleration of the highest-energy observable particles in powerful radio galaxies need not be coincident with the peaks of radio or even optical emission.Comment: Accepted for ApJ. 33 pages, 8 figures inc. 2 in colo

    The Origin of X-shaped Radio Galaxies: Clues from the Z-symmetric Secondary Lobes

    Full text link
    Existing radio images of a few X-shaped radio galaxies reveal Z-symmetric morphologies in their weaker secondary lobes which cannot be naturally explained by either the galactic merger or radio-lobe backflow scenarios, the two dominant models for these X-shaped radio sources. We show that the merger picture can explain these morphologies provided one takes into account that, prior to the coalescence of their supermassive black holes, the smaller galaxy releases significant amounts of gas into the ISM of the dominant active galaxy. This rotating gas, whose angular momentum axis will typically not be aligned with the original jets, is likely to provide sufficient ram pressure at a distance ~10 kpc from the nucleus to bend the extant jets emerging from the central engine, thus producing a Z-symmetry in the pair of radio lobes. Once the two black holes have coalesced some 10^7 yr later, a rapid reorientation of the jets along a direction close to that of the orbital angular momentum of the swallowed galaxy relative to the primary galaxy would create the younger primary lobes of the X-shaped radio galaxy. This picture naturally explains why such sources typically have powers close to the FR I/II break. We suggest that purely Z-symmetric radio sources are often en route to coalescence and the concomitant emission of substantial gravitational radiation, while X-shaped ones have already merged and radiated.Comment: 12 pages, 1 compressed figure; accepted for publication in ApJ Letter

    The 74MHz System on the Very Large Array

    Full text link
    The Naval Research Laboratory and the National Radio Astronomy Observatory completed implementation of a low frequency capability on the VLA at 73.8 MHz in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam) and resolution (~25 arcsec) for low-frequency observations. We review the hardware, the calibration and imaging strategies, comparing them to those at higher frequencies, including aspects of interference excision and wide-field imaging. Ionospheric phase fluctuations pose the major difficulty in calibrating the array. Over restricted fields of view or at times of extremely quiescent ionospheric ``weather'', an angle-invariant calibration strategy can be used. In this approach a single phase correction is devised for each antenna, typically via self-calibration. Over larger fields of view or at times of more normal ionospheric ``weather'' when the ionospheric isoplanatic patch size is smaller than the field of view, we adopt a field-based strategy in which the phase correction depends upon location within the field of view. This second calibration strategy was implemented by modeling the ionosphere above the array using Zernike polynomials. Images of 3C sources of moderate strength are provided as examples of routine, angle-invariant calibration and imaging. Flux density measurements indicate that the 74 MHz flux scale at the VLA is stable to a few percent, and tied to the Baars et al. value of Cygnus A at the 5 percent level. We also present an example of a wide-field image, devoid of bright objects and containing hundreds of weaker sources, constructed from the field-based calibration. We close with a summary of lessons the 74 MHz system offers as a model for new and developing low-frequency telescopes. (Abridged)Comment: 73 pages, 46 jpeg figures, to appear in ApJ

    Quintessence, Cosmology, and Fanaroff-Riley Type IIB Radio Galaxies

    Full text link
    Fanaroff-Riley type IIb (FR IIb) radio galaxies provide a modified standard yardstick that allows constraints to be placed on global cosmological parameters. A sample of 20 FR IIb radio galaxies with redshifts between 0 and 2 are compared with the parent population of 70 radio galaxies to determine the coordinate distance to each source. The coordinate-distance determinations are used to constrain the current mean mass-energy density of quintessence Ωq\Omega_q, the equation of state of the quintessence w, and the current mean mass-energy density of nonrelativistic matter Ωm\Omega_m; zero space curvature is assumed. Radio galaxies alone indicate that the universe is currently accelerating in its expansion (with 84% confidence); most of the allowed parameter space falls within the accelerating universe region on the Ωm\Omega_m-w plane. This provides verification of the acceleration of the universe indicated by high-redshift supernovae and suggests that neither method is plagued by systematic errors. It is found that Ωm\Omega_m must be less than about 0.5 and the equation of state w of the quintessence must lie between -0.25 and -2.5 at about 90% confidence. Fits of the radio galaxy data constrain the model parameter β\beta, which describes a relation between the beam power of the active galactic nucleus (AGN) and the total energy expelled through large-scale jets. It is shown that the empirically determined model parameter is consistent with models in which the outflow results from the electromagnetic extraction of rotational energy from the central compact object. A specific relation between the strength of the magnetic field near the AGN and the spin angular momentum per unit mass of the central compact object is predicted
    corecore