38 research outputs found

    A novel method for pulmonary research: Assessment of bioenergetic function at the air–liquid interface

    Get PDF
    AbstractAir–liquid interface cell culture is an organotypic model for study of differentiated functional airway epithelium in vitro. Dysregulation of cellular energy metabolism and mitochondrial function have been suggested to contribute to airway diseases. However, there is currently no established method to determine oxygen consumption and glycolysis in airway epithelium in air–liquid interface. In order to study metabolism in differentiated airway epithelial cells, we engineered an insert for the Seahorse XF24 Analyzer that enabled the measure of respiration by oxygen consumption rate (OCR) and glycolysis by extracellular acidification rate (ECAR). Oxidative metabolism and glycolysis in airway epithelial cells cultured on the inserts were successfully measured. The inserts did not affect the measures of OCR or ECAR. Cells under media with apical and basolateral feeding had less oxidative metabolism as compared to cells on the inserts at air-interface with basolateral feeding. The design of inserts that can be used in the measure of bioenergetics in small numbers of cells in an organotypic state may be useful for evaluation of new drugs and metabolic mechanisms that underlie airway diseases

    Use of conventional and alternative treatment strategies for a case of low back pain in a F/A-18 aviator

    Get PDF
    BACKGROUND: Low back pain can diminish jet pilot concentration and function during flight and be severe enough to ground pilots or cause decreased flying time. The objective of this case report is to present an example of the integration of chiropractic care with conventional treatments for the management of low back pain in a F/A-18 aviator. CASE PRESENTATION: The patient had insidious severe low back pain without radiation or neurological deficit, resulting in 24 hours of hospitalization. Spinal degeneration was discovered upon imaging. Four months later, it still took up to 10 minutes for him to get out of bed and several minutes to exit the jet due to stiffness and pain. He had discontinued his regular Marine Corps fitness training due to pain avoidance. Pain severity ranged from 1.5–7.1 cm on a visual analog scale. His Roland Morris Disability Questionnaire score was 5 out of 24. The pilot's pain was managed with the coordinated efforts of the flight surgeon, physiatrist, physical therapist, and doctor of chiropractic. Following this regimen he had no pain and no functional disability; he was able to fly multiple training missions per week and exercise to Marine Corps standards. CONCLUSION: A course of care integrating flight medicine, chiropractic, physical therapy, and physiatry appeared to alleviate pain and restore function to this F/A-18 aviator with low back pain

    Global warming and recurrent mass bleaching of corals

    Get PDF
    During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs

    Using Surveys to Compare the Public's and Decisionmakers' Preferences for Urban Regeneration: The Venice Arsenale

    Full text link

    Nitric oxide alters hyaluronan deposition by airway smooth muscle cells.

    No full text
    Asthma is a chronic inflammatory disease that is known to cause changes in the extracellular matrix, including changes in hyaluronan (HA) deposition. However, little is known about the factors that modulate its deposition or the potential consequences. Asthmatics with high levels of exhaled nitric oxide (NO) are characterized by greater airway reactivity and greater evidence of airway inflammation. Based on these data and our previous work we hypothesized that excessive NO promotes the pathologic production of HA by airway smooth muscle cells (SMCs). Exposure of cultured SMCs to various NO donors results in the accumulation of HA in the form of unique, cable-like structures. HA accumulates rapidly after exposure to NO and can be seen as early as one hour after NO treatment. The cable-like HA in NO-treated SMC cultures supports the binding of leukocytes. In addition, NO produced by murine macrophages (RAW cells) and airway epithelial cells also induces SMCs to produce HA cables when grown in co-culture. The modulation of HA by NO appears to be independent of soluble guanylate cyclase. Taken together, NO-induced production of leukocyte-binding HA by SMCs provides a new potential mechanism for the non-resolving airway inflammation in asthma and suggests a key role of non-immune cells in driving the chronic inflammation of the submucosa. Modulation of NO, HA and the consequent immune cell interactions may serve as potential therapeutic targets in asthma

    A novel method for pulmonary research: Assessment of bioenergetic function at the air–liquid interface

    Get PDF
    Air–liquid interface cell culture is an organotypic model for study of differentiated functional airway epithelium in vitro. Dysregulation of cellular energy metabolism and mitochondrial function have been suggested to contribute to airway diseases. However, there is currently no established method to determine oxygen consumption and glycolysis in airway epithelium in air–liquid interface. In order to study metabolism in differentiated airway epithelial cells, we engineered an insert for the Seahorse XF24 Analyzer that enabled the measure of respiration by oxygen consumption rate (OCR) and glycolysis by extracellular acidification rate (ECAR). Oxidative metabolism and glycolysis in airway epithelial cells cultured on the inserts were successfully measured. The inserts did not affect the measures of OCR or ECAR. Cells under media with apical and basolateral feeding had less oxidative metabolism as compared to cells on the inserts at air-interface with basolateral feeding. The design of inserts that can be used in the measure of bioenergetics in small numbers of cells in an organotypic state may be useful for evaluation of new drugs and metabolic mechanisms that underlie airway diseases

    The effect of NO is rapid.

    No full text
    <p>(A, B) SMCs were treated with 500 μM NOC-18 for up to 8 h. The cell layers were rinsed and stained for HA (green) and nuclei (blue). Arrows point to HA-containing cables. Original magnification 20x, 40x (A), or 63x with a 2x zoom (B). Images shown are representative of experiments performed at least three times. (C) SMCs were treated with 500 μM NOC-18 for up to 6 h. Cell layers were rinsed in PBS, lysed and analyzed by Western blotting for HAS2 and GAPDH. Blots shown are representative of three experiments.</p

    NO promotes the deposition of HA cables.

    No full text
    <p>SMCs were treated for 23 h at 37°C with or without 50 μM SNAP, 500 μM NOC-12, or 500 μM GSNO. The cell layer was rinsed in PBS, fixed in cold methanol and stained for HA (green) and nuclei (blue). Original magnification– 20X. Images shown are representative of experiments with three separate isolates of SMCs.</p
    corecore