316 research outputs found

    REMARKS

    Get PDF

    The Linear-Size Evolution of Classical Double Radio Sources

    Get PDF
    Recent investigations of how the median size of extragalactic radio sources change with redshift have produced inconsistent results. Eales compared the radio and optical properties of a bright 3C and faint 6C sample and concluded that D∝(1+z)−1.1±0.5D\propto(1+z)^{-1.1\pm0.5} (Ω0=0\Omega_0 = 0), with DD being the median size of the radio sources at a given epoch and z the redshift. Oort, Katgert, and Windhorst, on the other hand, from a comparison of the properties of a number of radio samples, found much stronger evolution, with D∝(1+z)−3.3±0.5D\propto(1+z)^{-3.3 \pm0.5}. In this paper we attempt to resolve the difference. We have repeated the analysis of Eales using the virtually complete redshift information that now exists for the 6C sample. Confining our analysis to FR2 sources, which we argue is the best-understood class of radio sources and the least likely to be affected by selection effects, we find D∝(1+z)−1.2±0.5D\propto(1+z)^{-1.2\pm0.5} (Ω0=0\Omega_0 = 0) and D∝(1+z)−1.7±0.4D\propto(1+z)^{-1.7\pm0.4} (Ω0=1\Omega_0 = 1). Our complete redshift information allows us to gain insight into our result by plotting a radio luminosity-size (P-D) diagram for the 6C sample. The most obvious difference between the 3C and 6C P-D diagrams is the clump of sources in the 6C diagram at D∌100kpc,P151∌5x1027WHz−1sr−1D\sim 100 kpc, P_{151}\sim 5x10^{27} WHz^{-1}sr^{-1}. These clump sources have similar sizes to the emission-line regions found around high-redshift radio galaxies, suggesting that the presence of dense line-emitting gas around high-redshift radio galaxies is responsible for the size evolution. We show that this explanation can quantitatively explain the observed size evolution, as long as there is either little X-ray emitting gas around these objects or, if there is, it is distributed in a similar way to the emission-line gas: highly anisotropic and inhomogeneous.Comment: compressed and uuencoded postscript file. 33 pages including 5 figures (441951 bytes). Accepted for publication in September Ap

    The FRET Signatures of Noninteracting Proteins in Membranes: Simulations and Experiments

    Get PDF
    AbstractFörster resonance energy transfer (FRET) experiments are often used to study interactions between integral membrane proteins in cellular membranes. However, in addition to the FRET of sequence-specific interactions, these experiments invariably record a contribution due to proximity FRET, which occurs when a donor and an acceptor approach each other by chance within distances of ∌100 Å. This effect does not reflect specific interactions in the membrane and is frequently unappreciated, despite the fact that its magnitude can be significant. Here we develop a computational description of proximity FRET, simulating the cases of proximity FRET when fluorescent proteins are used to tag monomeric, dimeric, trimeric, and tetrameric membrane proteins, as well as membrane proteins existing in monomer-dimer equilibria. We also perform rigorous experimental measurements of this effect, by identifying membrane receptors that do not associate in mammalian membranes. We measure the FRET efficiencies between yellow fluorescent protein and mCherry-tagged versions of these receptors in plasma-membrane-derived vesicles as a function of receptor concentration. Finally, we demonstrate that the experimental measurements are well described by our predictions. The work presented here brings additional rigor to FRET-based studies of membrane protein interactions, and should have broad utility in membrane biophysics research

    Transcriptomic-metabolomic reprogramming in EGFR-mutant NSCLC early adaptive drug escape linking TGFÎČ2-bioenergetics-mitochondrial priming.

    Get PDF
    The impact of EGFR-mutant NSCLC precision therapy is limited by acquired resistance despite initial excellent response. Classic studies of EGFR-mutant clinical resistance to precision therapy were based on tumor rebiopsies late during clinical tumor progression on therapy. Here, we characterized a novel non-mutational early adaptive drug-escape in EGFR-mutant lung tumor cells only days after therapy initiation, that is MET-independent. The drug-escape cell states were analyzed by integrated transcriptomic and metabolomics profiling uncovering a central role for autocrine TGFÎČ2 in mediating cellular plasticity through profound cellular adaptive Omics reprogramming, with common mechanistic link to prosurvival mitochondrial priming. Cells undergoing early adaptive drug escape are in proliferative-metabolic quiescent, with enhanced EMT-ness and stem cell signaling, exhibiting global bioenergetics suppression including reverse Warburg, and are susceptible to glutamine deprivation and TGFÎČ2 inhibition. Our study further supports a preemptive therapeutic targeting of bioenergetics and mitochondrial priming to impact early drug-escape emergence using EGFR precision inhibitor combined with broad BH3-mimetic to interrupt BCL-2/BCL-xL together, but not BCL-2 alone

    Using Global Positioning System Technology to Manage Human-Black Bear Incidents at Yosemite National Park

    Get PDF
    Managing human–bear (Ursus spp.) incidents is a top management priority in national parks inhabited by bears. Yosemite National Park (Yosemite), located in the Sierra Nevada in California, USA, receives up to 5 million visitors annually. It is also home to 300–500 black bears (U. americanus). Yosemite has an extensive history of black bear research, educational programs, and innovative solutions for reducing human–bear incidents. Despite this, human–bear incidents peaked in 1998 at 1,584. The resulting political fallout led to Yosemite receiving funds to expand its bear management program, including increasing its staffing and garbage pick-up, and improving the park’s bear-resistant infrastructure. In 2011, Yosemite reached a milestone when it recorded only 114 human–bear incidents—a 93% decrease from the 1998 high. To sustain this lower level of incidents while facing shrinking budgets and increasing visitation, bear managers turned to more modern technology. From 2014–2018, we evaluated the effectiveness of using global positioning system (GPS) collars to manage bears more proactively, increase staff and public engagement with bears, and gain insight into the bears’ spatial and temporal movements. The GPS collars were effective in achieving these goals, while also improving both our time management and our communication with park management. By the end of November 2018, Yosemite had recorded only 22 human–bear incidents—a 99% decrease from the 1998 high. The GPS collars are now an integral part of the Yosemite bear management program. We provide recommendations on how GPS technology may help other parks reduce human–bear incidents

    The C-Band All-Sky Survey: Instrument design, status, and first-look data

    Get PDF
    The C-Band All-Sky Survey (C-BASS) aims to produce sensitive, all-sky maps of diffuse Galactic emission at 5 GHz in total intensity and linear polarization. These maps will be used (with other surveys) to separate the several astrophysical components contributing to microwave emission, and in particular will allow an accurate map of synchrotron emission to be produced for the subtraction of foregrounds from measurements of the polarized Cosmic Microwave Background. We describe the design of the analog instrument, the optics of our 6.1 m dish at the Owens Valley Radio Observatory, the status of observations, and first-look data.Comment: 10 pages, 11 figures, published in Proceedings of SPIE MIllimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010), Vol. 7741, 77411I-1 - 77411I-1
    • 

    corecore