4,527 research outputs found

    Ocular structure in vitamin A deficiency in the monkey

    Get PDF
    1. The role of vitamin A in the metabolism of cone cells of the retina was investigated, from the morphological angle, by studying their structure in induced deficiency of vitamin A in three monkeys. 2. Unequivocal signs of structural damage were observed in the cone and rod cells of the deficient animals, which also showed the classical signs of vitamin A deficiency in other organs. 3. In vitamin A deficiency, damage to the visual cell layer of the retina occurred in one monkey in the absence of corneal involvement. This finding suggests that chronic vitamin A deficiency in the community may lead to progressive damage to the visual cells in a much larger number of persons than the incidence figures for keratomalacia indicate. 4. Degeneration of pigment epithelium was present in retinal sections from all the deficient animals. The possible role of the pigment epithelium in the pathogenesis of the visual defect in vitamin A deficiency has been discussed. 5. Degenerative changes were noted in Descemet's endothelium. This damage may contribute to the degeneration of the corneal epithelium

    Analytic Behaviour of Competition among Three Species

    Full text link
    We analyse the classical model of competition between three species studied by May and Leonard ({\it SIAM J Appl Math} \textbf{29} (1975) 243-256) with the approaches of singularity analysis and symmetry analysis to identify values of the parameters for which the system is integrable. We observe some striking relations between critical values arising from the approach of dynamical systems and the singularity and symmetry analyses.Comment: 14 pages, to appear in Journal of Nonlinear Mathematical Physic

    Lie symmetries for two-dimensional charged particle motion

    Full text link
    We find the Lie point symmetries for non-relativistic two-dimensional charged particle motion. These symmetries comprise a quasi-invariance transformation, a time-dependent rotation, a time-dependent spatial translation and a dilation. The associated electromagnetic fields satisfy a system of first-order linear partial differential equations. This system is solved exactly, yielding four classes of electromagnetic fields compatible with Lie point symmetries

    Symmetry dependence of phonon lineshapes in superconductors with anisotropic gaps

    Full text link
    The temperature dependence below TcT_{c} of the lineshape of optical phonons of different symmetry as seen in Raman scattering is investigated for superconductors with anisotropic energy gaps. It is shown that the symmetry of the electron-phonon vertex produces non-trivial couplings to an anisotropic energy gap which leads to unique changes in the phonon lineshape for phonons of different symmetry. The phonon lineshape is calculated in detail for B1gB_{1g} and A1gA_{1g} phonons in a superconductor with dx2y2d_{x^{2}-y^{2}} pairing symmetry. The role of satellite peaks generated by the electron-phonon coupling are also addressed. The theory accounts for the substantial phonon narrowing of the B1gB_{1g} phonon, while narrowing of the A1gA_{1g} phonon which is indistinguishable from the normal state is shown, in agreement with recent measurements on BSCCO.Comment: 15 pages (3 Figures available upon request), Revtex, 1

    How long before the end of inflation were observable perturbations produced?

    Get PDF
    We reconsider the issue of the number of e-foldings before the end of inflation at which observable perturbations were generated. We determine a plausible upper limit on that number for the standard cosmology which is around 60, with the expectation that the actual value will be up to 10 below this. We also note a special property of the λϕ4\lambda \phi^4 model which reduces the uncertainties in that case and favours a higher value, giving a fairly definite prediction of 64 e-foldings for that model. We note an extreme (and highly implausible) situation where the number of e-foldings can be even higher, possibly up to 100, and discuss the shortcomings of quantifying inflation by e-foldings rather than by the change in aHaH. Finally, we discuss the impact of non-standard evolution between the end of inflation and the present, showing that again the expected number of e-foldings can be modified, and in some cases significantly increased.Comment: 7 pages RevTeX4 file with one figure incorporated. Minor updates to match version accepted by Physical Review

    Observational constraints on the spectral index of the cosmological curvature perturbation

    Get PDF
    We evaluate the observational constraints on the spectral index nn, in the context of the Λ\LambdaCDM hypothesis which represents the simplest viable cosmology. We first take nn to be practically scale-independent. Ignoring reionization, we find at a nominal 2-σ\sigma level n1.0±0.1n\simeq 1.0 \pm 0.1. If we make the more realisitic assumption that reionization occurs when a fraction f105f\sim 10^{-5} to 1 of the matter has collapsed, the 2-σ\sigma lower bound is unchanged while the 1-σ\sigma bound rises slightly. These constraints are compared with the prediction of various inflation models. Then we investigate the two-parameter scale-dependent spectral index, predicted by running-mass inflation models, and find that present data allow significant scale-dependence of nn, which occurs in a physically reasonable regime of parameter space.Comment: ReVTeX, 15 pages, 5 figures and 3 tables, uses epsf.sty Improved treatment of reionization and small bug fixed in the constant n case; more convenient parameterization and better treatment of the n dependence in the CMB anisotropy for the running mass case; conclusions basically unchanged; references adde

    Two dimensional dynamical systems which admit Lie and Noether symmetries

    Full text link
    We prove two theorems which relate the Lie point symmetries and the Noether symmetries of a dynamical system moving in a Riemannian space with the special projective group and the homothetic group of the space respectively. The theorems are applied to classify the two dimensional Newtonian dynamical systems, which admit a Lie point/Noether symmetry. Two cases are considered, the non-conservative and the conservative forces. The use of the results is demonstrated for the Kepler - Ermakov system, which in general is non-conservative and for potentials similar to the H\`enon Heiles potential. Finally it is shown that in a FRW background with no matter present, the only scalar cosmological model which is integrable is the one for which 3-space is flat and the potential function of the scalar field is exponential. It is important to note that in all applications the generators of the symmetry vectors are found by reading the appropriate entry in the relevant tables.Comment: 25 pages, 17 table

    Evolution of Second-Order Cosmological Perturbations and Non-Gaussianity

    Get PDF
    We present a second-order gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We apply such a general formalism to describe the evolution of the second-order curvature perturbations in the standard one-single field inflation, in the curvaton and in the inhomogeneous reheating scenarios for the generation of the cosmological perturbations. Moreover, we provide the exact expression for the second-order temperature anisotropies on large scales, including second-order gravitational effects and extend the well-known formula for the Sachs-Wolfe effect at linear order. Our findings clarify what is the exact non-linearity parameter f_NL entering in the determination of higher-order statistics such as the bispectrum of Cosmic Microwave Background temperature anisotropies. Finally, we compute the level of non-Gaussianity in each scenario for the creation of cosmological perturbations.Comment: 14 pages, LaTeX file. Further comments adde

    Ethics, space, and somatic sensibilities: comparing relationships between scientific researchers and their human and animal experimental subjects

    No full text
    Drawing on geographies of affect and nature-society relations, we propose a radical rethinking of how scientists, social scientists, and regulatory agencies conceptualise human and animal participants in scientif ic research. The scientific rationale for using animal bodies to simulate what could be done in human bodies emphasises shared somatic capacities that generate comparable responses to clinical interventions. At the same time, regulatory guidelines and care practices stress the differences between human and animal subjects. In this paper we consider the implications of this differentiation between human and animal bodies in ethical and welfare protocols and practices. We show how the bioethical debates around the use of human subjects tend to focus on issues of consent and language, while recent work in animal welfare reflects an increasing focus on the affectual dimensions of ethical practice. We argue that this attention to the more-than-representational dimensions of ethics and welfare might be equally important for human subjects. We assert that paying attention to these somatic sensibilities can offer insights into how experimental environments can both facilitate and restrict the development of more care-full and response-able relations between researchers and their experimental subjects. <br/
    corecore