277 research outputs found

    Automated service monitoring in the deployment of ARCHER2

    Get PDF
    The ARCHER2 service, a CPU based HPE Cray EX system with 750,080 cores (5,860 nodes), has been deployed throughout 2020 and 2021, going into full service in December of 2021. A key part of the work during this deployment was the integration of ARCHER2 into our local monitoring systems. As ARCHER2 was one of the very first large-scale EX deployments, this involved close collaboration and development work with the HPE team through a global pandemic situation where collaboration and co-working was significantly more challenging than usual. The deployment included the creation of automated checks and visual representations of system status which needed to be made available to external parties for diagnosis and interpretation. We will describe how these checks have been deployed and how data gathered played a key role in the deployment of ARCHER2, the commissioning of the plant infrastructure, the conduct of HPL runs for submission to the Top500 and contractual monitoring of the availability of the ARCHER2 service during its commissioning and early life

    Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas

    Get PDF
    The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing 'pancreatospheres' in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas

    Primary explant cultures of adult and embryonic pancreas.

    Get PDF
    Summary The developmental plasticity of adult pancreas is evidenced by the ability to undergo conversion between different epithelial cell types. Specific examples of such conversions include acinar to ductal metaplasia, ductal to islet metaplasia, and generation of ductal structures within islets. Although 90% of human pancreatic cancers are classified as ductal adenocarcinoma, markers of all pancreatic epithelial cell types (acini, ductal, and endocrine) as well as markers of gastric and intestinal lineages can be detected in these tumors. In recent years considerable knowledge has been gained regarding regulation of cellular differentiation and various signaling pathways involved in normal and neoplastic pancreas through studies of pancreatic cancer and immortalized ductal cell lines. However, these studies provide little insight into the context of normal developmental cues, the disruption of which leads to organ pathology. Here we have described a detailed method for preparation, maintenance, and manipulation of adult and embryonic mouse pancreas. These methods may be utilized in studies involving normal epithelial differentiation, contributing to improved understanding of pancreatic development and disease

    Wnt/β-catenin signaling is required for development of the exocrine pancreas

    Get PDF
    BACKGROUND: β-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis. RESULTS: Pdx1-cre floxed β-catenin animals were viable but demonstrated small body size and shortened median survival. The pancreata from knockout mice were hypoplastic and histologically demonstrated a striking paucity of exocrine pancreas, acinar to duct metaplasia, but generally intact pancreatic islets containing all lineages of endocrine cells. In animals with extensive acinar hypoplasia, putative hepatocyte transdifferention was occasionally observed. Obvious and uniform pancreatic hypoplasia was observed by embryonic day E16.5. Transcriptional profiling of Pdx1-cre floxed β-catenin embryonic pancreata at E14.5, before there was a morphological phenotype, revealed significant decreases in the β-catenin target gene N-myc, and the basic HLH transcription factor PTF1, and an increase of several pancreatic zymogens compared to control animals. By E16.5, there was a dramatic loss of exocrine markers and an increase in Hoxb4, which is normally expressed anterior to the pancreas. CONCLUSION: We conclude that β-catenin expression is required for development of the exocrine pancreas, but is not required for development of the endocrine compartment. In contrast, β-catenin/Wnt signaling appears to be critical for proliferation of PTF1+ nascent acinar cells and may also function, in part, to maintain an undifferentiated state in exocrine/acinar cell precursors. Finally, β-catenin may be required to maintain positional identity of the pancreatic endoderm along the anterior-posterior axis. This data is consistent with the findings of frequent β-catenin mutations in carcinomas of acinar cell lineage seen in humans

    Multiwaveband Observations of Quasars with Flat Radio Spectra and Strong Millimeter Emission

    Full text link
    We present multiwaveband observations of a well selected sample of 28 quasars and two radio galaxies with flat radio spectra and strong millimeter wave emission (referred to here as FSRQ's). The observations include multifrequency VLBI measurements, X-ray observations with ROSAT and submillimeter observations with the JCMT. Particularly interesting among many findings is a correlation between the X-ray to millimeter spectral index and fraction of flux density contained in the VLBI core. This tendency toward higher X-ray fluxes from sources with stronger jet emission implies that the knots in the jet are the prominent source of X-rays.Comment: 38 pages, 17 figures, 12 tables, accepted for publication in Ap J Suppl, May 199

    Blueberry Progress Reports

    Get PDF
    The 1978 edition of the Blueberry Progress Reports was prepared for the Maine Blueberry Commission and the University of Maine Blueberry Advisory Committee by researchers with the Maine Life Sciences and Agriculture Experiment Station and Maine Cooperative Extension Service at the University of Maine, Orono. Projects in this report include: 1. Weed Control in Blueberry Fields 2. Pruning of Blueberries 3. Integrated Management of Blueberry Fields 4. Factors Regulating Rhizome Initiation and Development in the Lowbush Blueberry 5. Effect of Plant-Water Stress on Lowbush Blueberry Growth Yield and Quality 6. Blossom Blight of Blueberries 7. Botrytis Blossom Blight of Lowbush Blueberries 8. Insects Affecting the Blueberry 9. Treatment of Blueberries with Potassium Sorbate to Reduce Spoilage During Temporary Storage 10. Cooperative Extension Activitie

    Oncogenic Kras Activates a Hematopoietic-to-Epithelial IL-17 Signaling Axis in Preinvasive Pancreatic Neoplasia

    Get PDF
    SummaryMany human cancers are dramatically accelerated by chronic inflammation. However, the specific cellular and molecular elements mediating this effect remain largely unknown. Using a murine model of pancreatic intraepithelial neoplasia (PanIN), we found that KrasG12D induces expression of functional IL-17 receptors on PanIN epithelial cells and also stimulates infiltration of the pancreatic stroma by IL-17-producing immune cells. Both effects are augmented by associated chronic pancreatitis, resulting in functional in vivo changes in PanIN epithelial gene expression. Forced IL-17 overexpression dramatically accelerates PanIN initiation and progression, while inhibition of IL-17 signaling using genetic or pharmacologic techniques effectively prevents PanIN formation. Together, these studies suggest that a hematopoietic-to-epithelial IL-17 signaling axis is a potent and requisite driver of PanIN formation

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. © 2013 Kaabinejadian et al
    corecore