1,865 research outputs found

    Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterising cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialised compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterised. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and heme, is incomplete. We discuss tools that may aid characterisation of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterisation of individual proteins

    Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria.

    Get PDF
    Cyanobacteria have evolved elaborate electron transport pathways to carry out photosynthesis and respiration, and to dissipate excess energy in order to limit cellular damage. Our understanding of the complexity of these systems and their role in allowing cyanobacteria to cope with varying environmental conditions is rapidly improving, but many questions remain. We summarize current knowledge of cyanobacterial electron transport pathways, including the possible roles of alternative pathways in photoprotection. We describe extracellular electron transport, which is as yet poorly understood. Biological photovoltaic devices, which measure electron output from cells, and which have been proposed as possible means of renewable energy generation, may be valuable tools in understanding cyanobacterial electron transfer pathways, and enhanced understanding of electron transfer may allow improvements in the efficiency of power output. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.We are grateful to the Environmental Services Association Education Trust, EnAlgae (European Regional Development Fund: INTERREG IVB NEW programme), and the Department of Biotechnology, India, for financial support.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.bbabio.2015.10.00

    Cytochrome cM decreases photosynthesis under photomixotrophy in Synechocystis sp. PCC 6803

    Get PDF
    Photomixotrophy is a metabolic state that enables photosynthetic microorganisms to simultaneously perform photosynthesis and metabolism of imported organic carbon substrates. This process is complicated in cyanobacteria, since many, including Synechocystis sp. PCC 6803, conduct photosynthesis and respiration in an interlinked thylakoid membrane electron transport chain. Under photomixotrophy, the cell must therefore tightly regulate electron fluxes from photosynthetic and respiratory complexes. In this study, we demonstrate, via characterization of photosynthetic apparatus and the proteome, that photomixotrophic growth results in a gradual inhibition of QA- reoxidation in wild-type Synechocystis, which largely decreases photosynthesis over 3 d of growth. This process is circumvented by deleting the gene encoding cytochrome cM (CytM), a cryptic c-type heme protein widespread in cyanobacteria. The ΔCytM strain maintained active photosynthesis over the 3-d period, demonstrated by high photosynthetic O2 and CO2 fluxes and effective yields of PSI and PSII. Overall, this resulted in a higher growth rate compared to that of the wild type, which was maintained by accumulation of proteins involved in phosphate and metal uptake, and cofactor biosynthetic enzymes. While the exact role of CytM has not been determined, a mutant deficient in the thylakoid-localized respiratory terminal oxidases and CytM (ΔCox/Cyd/CytM) displayed a phenotype similar to that of ΔCytM under photomixotrophy. This, in combination with other physiological data, and in contrast to a previous hypothesis, suggests that CytM does not transfer electrons to these complexes. In summary, our data suggest that CytM may have a regulatory role in photomixotrophy by modulating the photosynthetic capacity of cells

    Cryptic microbial hydrocarbon cycling.

    Get PDF
    Cyanobacteria, which produce ~25% of global oxygen, also release around 100 times more hydrocarbons into the ocean than all petroleum sources. A cryptic microbial cycle explains why these hydrocarbons do not accumulate in the sea

    Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology

    Get PDF
    Recent advances in synthetic biology and an emerging algal biotechnology market have spurred a prolific increase in the availability of molecular tools for cyanobacterial research. Nevertheless, work to date has focused primarily on only a small subset of model species, which arguably limits fundamental discovery and applied research towards wider commercialisation. Here, we review the requirements for uptake of new strains, including several recently characterised fast-growing species and promising non-model species. Furthermore, we discuss the potential applications of new techniques available for transformation, genetic engineering and regulation, including an up-to-date appraisal of current Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein (CRISPR/Cas) and CRISPR interference (CRISPRi) research in cyanobacteria. We also provide an overview of several exciting molecular tools that could be ported to cyanobacteria for more advanced metabolic engineering approaches (e.g., genetic circuit design). Lastly, we introduce a forthcoming mutant library for the model species Synechocystis sp. PCC 6803 that promises to provide a further powerful resource for the cyanobacterial research community

    Insights into the vertical stratification of microbial ecological roles across the deepest seawater column on Earth

    Get PDF
    The Earth’s oceans are a huge body of water with physicochemical properties and microbial community profiles that change with depth, which in turn influences their biogeochemical cycling potential. The differences between microbial communities and their functional potential in surface to hadopelagic water samples are only beginning to be explored. Here, we used metagenomics to investigate the microbial communities and their potential to drive biogeochemical cycling in seven different water layers down the vertical profile of the Challenger Deep (0–10,500 m) in the Mariana Trench, the deepest natural point in the Earth’s oceans. We recovered 726 metagenome-assembled genomes (MAGs) affiliated to 27 phyla. Overall, biodiversity increased in line with increased depth. In addition, the genome size of MAGs at ≥4000 m layers was slightly larger compared to those at 0–2000 m. As expected, surface waters were the main source of primary production, predominantly from Cyanobacteria. Intriguingly, microbes conducting an unusual form of nitrogen metabolism were identified in the deepest waters (>10,000 m), as demonstrated by an enrichment of genes encoding proteins involved in dissimilatory nitrate to ammonia conversion (DNRA), nitrogen fixation and urea transport. These likely facilitate the survival of ammonia-oxidizing archaea α lineage, which are typically present in environments with a high ammonia concentration. In addition, the microbial potential for oxidative phosphorylation and the glyoxylate shunt was enhanced in >10,000 m waters. This study provides novel insights into how microbial communities and their genetic potential for biogeochemical cycling differs through the Challenger deep water column, and into the unique adaptive lifestyle of microbes in the Earth’s deepest seawater

    A dual compartment cuvette system for correcting scattering in whole-cell absorbance spectroscopy of photosynthetic microorganisms.

    Get PDF
    Funder: Waste Environmental Education Research TrustAbsorption spectroscopy is widely used to determine absorption and transmission spectra of chromophores in solution, in addition to suspensions of particles, including micro-organisms. Light scattering, caused by photons deflected from part or all of the cells or other particles in suspension, results in distortions to the absorption spectra, lost information and poor resolution. A spectrophotometer with an integrating sphere may be used to alleviate this problem. However, these instruments are not universally available in biology laboratories, for reasons such as cost. Here, we describe a novel, rapid, and inexpensive technique that minimises the effect of light scattering when performing whole-cell spectroscopy. This method involves using a custom made dual compartment cuvette containing titanium dioxide in one chamber as a scattering agent. Measurements were conducted of a range of different photosynthetic micro-organisms of varying cell size and morphology, including cyanobacteria, eukaryotic microalgae and a purple non-sulphur bacterium. A concentration of 1 mg ml-1 titanium dioxide, using a spectrophotometer with a slit width of 5 nm, produced spectra for cyanobacteria and microalgae similar (1-4% difference) to those obtained using an integrating sphere. The spectrum > 520 nm was similar to that with an integrating sphere with the purple non-sulphur bacterium. This system produced superior results to those obtained using a recently reported method, the application of the diffusing agent, Scotch™ Magic tape, to the side of the cuvette. The protocol can be completed in an equivalent period of time to standard whole-cell absorbance spectroscopy techniques, and is, in principle, suitable for any dual-beam spectrophotometer.Waste Environmental Education Research Trust Leverhulme Trus
    • …
    corecore